$^{18}Ne(\alpha,p)^{21}Na$ via $^{18}Ne(^{6}Li,d)^{22}Mg^{*}$ alpha transfer

E1110

TRIUMF, EEC July 24, 2006

TRIUMF G. Ruprecht L. Buchmann P. Walden J. Pearson

C. Ruiz

A. Hussein

<u>University of Edinburgh</u> T. Davinson M. Aliotta

THE UNIVERSITY of York

University of York B. Fulton A. M. Laird R. Lewis

The hot CNO cycle and its breakout

The "cold" CNO cycle

 $T_9 = 0.01$ $\rho = 100 \text{ g/cm}^3$

²¹Na + p 5.50 MeV

Direct measurements

W. Bradfield-Smith, *et al.*, Phys. Rev. C **59**(1999)3402 D. Groombridge, *et al.*, Phys. Rev. C **66**(2002)055802

D. Groombridge, et al., Phys. Rev. C 66(2002)055802

Unique level assignments

$\overline{E_r}$ (MeV)	Γ (MeV)	E_x (²² Mg) (MeV)	Observed channel
1.98 ± 0.14	0.10 ± 0.02	10.12 ± 0.14	<i>p</i> 2
2.17 ± 0.14	0.13 ± 0.08	10.31 ± 0.14	p2
2.28 ± 0.15	0.21 ± 0.10	10.42 ± 0.15	p0
2.41 ± 0.14	0.16 ± 0.03	10.55 ± 0.14	p2
2.52 ± 0.14	0.10 ± 0.05	10.66 ± 0.14	p0
2.72 ± 0.14	0.21 ± 0.01	10.86 ± 0.14	p3
2.78 ± 0.14	0.12 ± 0.02	10.92 ± 0.14	p0
2.87 ± 0.14	0.10 ± 0.02	11.01 ± 0.14	<i>p</i> 6

Ambiguous level assignments

E_r (MeV)	Γ (MeV)	E_x (²² Mg) (MeV)	Observed channel
2.27 ± 0.15	0.21 ± 0.10	10.41 ± 0.15	<i>p</i> 0
2.55 ± 0.14	0.19 ± 0.04	10.69 ± 0.14	p0
2.74 ± 0.14	0.30 ± 0.04	10.88 ± 0.14	p1
2.12 ± 0.14	0.07 ± 0.03	10.26 ± 0.14	p2
2.34 ± 0.14	0.16 ± 0.04	10.48 ± 0.14	p2
2.63 ± 0.14	0.12 ± 0.07	10.77 ± 0.14	<i>p</i> 3
2.86 ± 0.14	0.12 ± 0.02	11.00 ± 0.14	<i>p</i> 3
2.06 ± 0.14	0.09 ± 0.03	10.20 ± 0.14	p4
2.52 ± 0.14	0.15 ± 0.02	10.66 ± 0.14	p4
2.54 ± 0.14	0.11 ± 0.01	10.68 ± 0.14	p5
2.73 ± 0.14	0.13 ± 0.03	10.87 ± 0.14	<i>p</i> 6
2.84 ± 0.14	0.08 ± 0.02	10.98 ± 0.14	p7

Some facts about ${}^{18}Ne(\alpha,p){}^{21}Na$

- The proton penetration is extremely high compared with the α penetration. Therefore, the α width completely dominates the resonance strength, the cross section, as well as the stellar reaction rate.
- Due to the drastically decreasing α penetration it is impossible to measure this reaction directly or inversely at the astrophysically important region for T₉ = 0.3 1. About 10¹⁰ times higher ¹⁸Ne intensities than currently available would be needed.

Direct measurement vs. alpha transfer

Indirect Measurements

Errors in keV in italics. Levels in parenthesis are tentative assignments.

Problems with previous measurements

- Direct measurements require a radioactive beam of extremely high intensity. Currently, only 5 x 10^5 pps can be achieved.
- Only one impact energy. Energy changed by energy loss in the target
 --> Problem of vertex localization and straggling
- Indirect measurements done so far have not been sensitive to α widths
 ---> No spectroscopic information

Problem with previous E870 proposal

 Intensities of at least 10⁸ pps are needed This can **not** be achieved in the near future. But even if, the region below E_{c.m.}< 1.0 can never be measured directly
 The new **FEBIAD** source can presumably provide 5 x 10⁵ pps at the target.

The current proposal

Instead of higher <u>intensities</u> we use higher <u>energies</u> available now at **ISAC II**

DWBA calculation

Proposed set-up

Location: TUDA II @ ISAC II

Beam: 4.5 MeV/u ¹⁸Ne, 5 x 10⁵ pps

<u>Target:</u> 25 μ g/cm² (0.1 μ m) ⁶Li-F on carbon backing

<u>Detectors:</u> 300 or 100 μ m thick LEDA arrays (3 arrays à 8 sectors à 16 strips)

Elastics

¹⁸Ne(⁶Li,d)²²Mg[10.12 MeV, 2⁺] reaction products

<u>Good news</u>

Even if only a bad DWBA fit can be achieved, the spectroscopic factors **can still be normalized** to states at higher energies, as detected in the **direct measurements**.

This makes the analysis almost independent from the optical model parameters

Estimated required beam time

Limiting factor: Level density that has to be resolved in the spectrum

Estimated required beam time

- 5 x 10⁵ pps ¹⁸Ne, 4.5 MeV/u are sufficient to identify levels in ²²Mg above the alpha threshold in the important region for $T_9 = 0.4$ with 2 weeks of beam time.
- 5 x 10⁵ pps could also provide a rough estimate (50% error) of the spectroscopic factors.
 --> Great improvement compared with 8-10 orders of magnitude current uncertainty for the stellar reaction rate.
- With higher intensities, more energies could be measured. This improves the statistics but also reduces uncertainties from the model.

Therefore, we need **24 12-hour shifts** (2 weeks) of continuous 18 Ne beam with an intensity of at least 5 x 10⁵ pps.

Conclusion

- The experiment can be performed with the available intensity of 5 x 10⁵ pps in a 2 weeks run.
- A higher intensity (factor 10) is highly desirable. This is still far from the intensity of 10⁸ required for the direct measurement E870.
- Problems in the analysis are model dependencies. This can be improved by detection of elastically scattered deuterons.
- All levels relevant for the ¹⁸Ne + α channel can be detected simultaneously. From the angular distribution, J^{π} can be derived, from the intensity, the α widths can be determined
- Also low-lying levels relevant for 21 Na(p, γ) can be detected.

- Despite the model uncertainties, the relative strength of the levels is rather model independent. This makes a normalization to known levels possible.

Thanks

Improved Set-up

LEDAs in "lampshade" arrangement

Model uncertainties

