
2706 J. LQVSETH AND M. HADOMSKI

Report No. SS-133 (unpublished).
For a review, see C. Franzinetti, in Topical Conference

on Weak Interactions, CERN, Geneva, Szvitzerland, 1969,
Ref. 3, pp. 43-60.

~ The Fierz transformation is not an essential element
of the calculation. However, it does simplify the algebra.

~~See, e.g. , R. E. Taylor, in Proceedings of the Third
International Symposium on Electron and Photon Interac-
tions at High Energies, Stanford Linear Accelerator
Center, Stanford, California, 1967 (Clearing House of
Federal Scientific and Technical Information, Washing-
ton, D.C., 1968), pp. 78-100. The neutron electric form
factor may not be precisely zero, but even Gz {neutron)
tx:xG would add no more than 10% to the total neutron
cross sections at 15 GeV;

~2R. Hofstadter and H. R. Collard, in Landolt-Bornstein,
Numerical Data and Functional Relationships in Science
and Technology (Springer-Verlag, Berlin, 1967), Vol.

I/2, p. 26.
~~I. Sick and J. S. McCarthy, Nucl. Phys. A150, 631

(1970).
4J. S. R. Chisholm, Nuovo Cimento 30, 426 (1963).

~5Reference 6. The value 235 F is a representative one,
somewhat low for the heavier nuclei —see E. J. Moniz,
Phys. Rev. 184, 1154 (1969).

See, e.g. , the discussion in J. S. Bell and C. H.
Llewellyn Smith, CERN Report, No. CERN-TH-1259 (un-
published),

~For C there is an additional 30% reduction coming
from the discrepancy between a = 0.93A~~3, which CSW
used, and a =(0.58+ 0.82A ), which gives low-q cor-
respondence with FI;.

J. D. Walecka and P. Zucker, Phys. Rev. 167, 1479
(1968).
~~P. Pritchett and P. Zucker, Phys. Rev. D 1, 175

(1970).

PH YSICAI REVIEW D VOLUME 3, NUMBER 11 1 JUNE 1971

Current Matrix Elements from a Relativistic Quark Model*

R. P. Feynman, M, Kislinger, and F. Ravndal
Lauritsen Laboratory of Physics, California Institute of Technology, Pasadena, California 91109

(Received 17 December 1970)

A relativistic equation to represent the symmetric quark model of hadrons with harmonic
interaction is used to define and calculate matrix elements of vector and axial-vector cur-
rents. Elements between states with large mass differences are too big compared to experi-
ment, so a factor whose functional form involves one arbitrary constant is introduced to
compensate this. The vector elements are compared with experiments on photoelectiic me-
son production, X&& decay, and m aery. Pseudoscalar-meson decay widths of hadrons are
calculated supposing the amplitude is proportional (with one new scale constant) to the diver-
gence of the axial-vector current matrix elements. Starting only from these two constants,
the slope of the Regge trajectories, and the masses of the particles, 75 matrix elements are
calculated, of which more than 4 agree with the experimental values within 40%. The prob-
lems of extending this calculational scheme to a viable physical theory are discussed.

INTRODUCTION

The symmetric, nonrelativistic harmonic-oscil-
lator quark model has been shown by a number of
people" to offer considerable promise of helping
to organize the wealth of data in the resonance
region for high-energy phenomena. We intend
here to bring some of these results together in a
unified method of calculation in order to judge
better the validity of this organizing power.

A truly relativistic quantum-mechanical theory
today seems available only in the complexities of
field theory with its many virtual states involving,
for example, pairs, ete. It is so complex that no
particular dynamic regularities among the res-
onances are expected of it, other than those re-
sulting from symmetries of the original Hamilton-
ian. We have gone in a different direction, saeri-

ficing theoretical adequacy for simplicity. We
shall choose a relativistic theory which is naive
and obviously wrong in its simplicity, but which
is definite and in which we can calculate as many
things as possible —not expecting the results to
agree exactly with experiment, but to see how
closely our "shadow of the truth" equation gives
a partial reflection of reality. In our attempt to
maintain simplicity, we shall evidently have to
violate known principles of a complete relativistic
field theory (for example, unitarity). We shall
attempt to modify our calculated results in a gen-
eral way to allow, in a vague way, for these errors.

This is, of course, quite dangerous-because if
one allows too much latitude in modifying the re-
sults of the calculations, especially if empirical
results are allowed to influence strongly the many
arbitrary choices, the significance of later par-
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tial agreement with experiment is compromised
and hard to interpret. We have kept our choices
down to three constants in trying to fit over 100
data. The first of these constants is the spacing
of levels per unit of angular momentum along tra-
jectories (that is, the reciprocal slope of the
Regge trajectories), chosen to be the same for
baryons and mesons, Q=1.05 GeV'. The second
constant is a measure of the strength of the pseu-
doscalar-meson coupling to hadrons. With just
these, we find that our theoretical matrix elements
drift further and further afield as the masses of
the resonances increase. We interpret this as a
consequence of the lack of unitarity and, in a
most unsatisfactory way, have included in all ma-
trix elements an adjustment factor F, a Gaussian
in the center-of-mass momentum of the reaction,
to cut the calculated elements down at higher en-
ergies. This is frankly just empirical fitting —the
Gaussian form is chosen by analogy to such a fac-
tor in the nonrelativistic harmonic oscillator. The
coefficient in the exponential of the Gaussian is
our third constant. Our philosophy is to maintain
simplicity and calculate everything directly and in
first order, as it were. No allowances will be
made for configuration mixing, spin-orbit coupling,
and other physically real complications, for we do
not mean that our original hypotheses are so near
the truth to warrant such modifications, rather than
modifications at the very beginning of our naive
assumptions. The point of all this is to get some
idea whether there is any resemblance to the real
situation in the quark harmonic-oscillator model.
We have concluded from our analysis that there is
indeed. In the following sections we present the
details of the calculations and the results.

HADRON SPECTRUM

The states in the harmonic-oscillator quark
model are characterized as follows. For the bar-
yons of three quarks we have, besides the spin and
unitary-spin multiplets 56, 70, and 20, excitations
of two independent three-dimensional modes of
internal harmonic oscillation among the three par-
ticles. For the lower excitations, a state can be
uniquely described by giving the total N, the total
number of excitations of all the modes, and the L
or total orbital angular momentum. For higher
states this is not unique (there may be several
ways to make up the same total L from the two
angular momenta of the two three-dimensional in-
ternal degrees of freedom). We shall write each
SU, multiplet state as [A, L ]„, where A is 56, 70,
or 20, L is the total orbital angular momentum,
N the total quantum number, and the parity P = (-1)".
If we further wish to specify an SU, multiplet with-

in this, we adjoin (B)~, where B is the SU, multi-
plet which must be 1, 8, or 10 (since singlet, octet,
or decimets are all we can expect), d is the spin
multiplicity (four for total of quark spine —,', two
for total quark spin —,'), and J is the total angular
momentum of the state.

If we wish to speak of a particular particle with-
in a multiplet, we finally add its name. Thus the
neutron is N(938) '(8)„,[56, 0'],. The 56 contains
'(8) and '(10), the 70 is '(1); '(8); '(8); '(10); and
the 20 is '(1); '(8). We have not yet identified any
states belonging to the 20.

The multiplets we expect from the model, and
the observed highest hypercharge state of each
multiplet (N for octets, A for decimets, A for
singlets) are given in Table II below. The other
states of the multiplets are identified where known
(as "accepted" in the Particle Properties Tables' )
in Table IV below.

The numbers after each state are the mass
squared. In this variable we have noticed some
regularities. ' First, of course, is the Regge rela-
tion, that adding I.= 2 repeats the multiplet 2Q
= 2.10 GeV' higher (e.g. , compare [56, 0'], and

[56, 2']„or [70, 1 ], and [70, 3 ],). Masses seem
to depend on L, but there is little spin-orbit cou-
pling; each J has the same energy for given L.
There is one enigmatic outstanding exception:
A(1405) '(1)...and A(1520) '(1)»,. Inside the multi-
plets we would expect Z and A to be degenerate.
If we take the average of the Z and A mass squared
as the mass corresponding to strangeness S=-1
for an octet, we can see that the mass square
rises by about 0.45 for each unit of -S in octets,
and by about 0.40 in decimets (Here .and in the
following we measure mass squares in GeV'. ) Only
the Z(1915) does not fit well into its octet, and fits
even worse into the decimet at J= ~". There are
strong differences in mass squared depending on the
spin relation (quartet or doublet) of the quarks and
the unitary-spin relation (1, 8, or 10). It does
look as if the energy can be nearly separated into
a sum of terms: one for strangeness (described
above), one for SU, -multiplet character,

56 '(8) 0.88

'(10) 1.55

70 (1) 1.25 (or 0.92)

'(8) 1.30

'(8) 1.80

2(10) 1.70,

and one for orbital energy, 1.05K plus possible
additional corrections for the N= 2 state, depend-
ing on how the two orbits are compounded,
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+=2: 0,=-0.82,

2 =09

2„g=+0.06,

Q~ ~
= -0.23,

1p unknown.

The exact meaning of these last symbols is made
precise in the Appendix. We noticed empirically
that the Z' —A' mass-square difference may alter-
nate in sign with parity, being about 0.16 ~parity-
again excepting the Z(1915), or supposing it to be-
long to the decimet (for evidence that this may be
the case, see below). Such rules give all the
masses to within 1.5%%uo except for the A(1405) enigma
and the Z(1915}.

Our model will be a harmonic oscillator whose
eigenvalues are m'. This will describe the m'

varying as NQ, but wi11 not take into account what
spin-orbit energy variation there xeally is, as
well as the corrections (3). We shall simply sup-
pose that, without disturbing the form of the Ham-
iltonian otherwise, a constant, C, is added. This
C gets a contribution (around 0.4 GeV') for each
strange quark. Less satisfactory, the internal
splits in the multiplet (1) are given no explanation,
but are again represented by just adding the con-
stants (1) to the value of C.

For mesons, the theoretical classification of the
states of q and q is easier. There is just one SU,
multiplet 36, so we will not put that in our nota-
tion. It consists of a spin-0 octet and singlet (or
"nonet"), and a spin-1 nonet. These we call sing-
let and triplet states, respectively. The internal
angular momentum combines with this spin to
make a total J. The experimental situation among
the mesons is more confused than among the bar'-

yons, and we have only chosen to try to identify
the states of %=0 and some of N= 1. We there-
fore need no elaborate notation, and use 'S, and
'S, for the N= 0 singlet and triplet nonets; 'P„
'P„and 'P, for the N= 1 states made from the
triplet combined with J =1 to make J=2, 1, and 0;
and 'P, for the singlet combined with L = 1 to make
4=1. The S states have negative parity, the P
states positive parity. We have identified the states
as given in Table V below.

Spin-orbit coupling is more obvious than in the
baryons, but we continue to ignore it in our "Ham-
iltonian fox m'. " We suppose that in triplet nonets,
states like ro and P are mixed so that P and f' are
made of pure strange quarks. For singlet nonets
like q and q', we suppose there is no mixing.
Again, we suppose that on trajectories m rises by
1.05K [for example, p„(1670)2.77 is probably 3,
a repetition of p(765) 0.58, and possibly degenerate

with the trajectorythrough the 'P, 4, near m' = 1.69].
We have no explanation for the apparent splitting
of the A2 and consider the split peak to be one res-
onance (of width near 90 MeV).

For S states, each strange quark supplies 0.24
GeV' to the mass squared. The P has two strange
quarks, but q and q' are not diagonal in this quan-
tity; the mean number is —,

' for g and —,
' for g'.

Something must be assumed to push the SU, sing-
let (unitary singlet and spin singlet) g up in en-
er gy.

BARYON DYNAMICS

Our point of departure is the nonrelativistic
harmonic-oscillator symmetric quark model of
Gxeenberg. ' This raises a number of points which
we have tried to solve. The main difficulty is that
the excitation energies of the states are not small
enough relative to the masses themselves to war-
rant using the nonrelativistie principles. This is
especially true for mesons. It also leaves open
the question of the quark mass, whether it is —, the
pion mass or —', the nucleon mass; for harmonic
excitations ean only lead to energies above the rest
mass of the parts.

A simple harmonic-oscillator Hamiltonian is

H=—P +2m&OX.2 & 2 2

Multiply by 2m and set m'e, ' = Q', to get

and the quark mass disappears on the right-hand
side.

But what is the left-hand side'P If we add a con-
stant, m', it is m'+2mB or its eigenvalues, m'

+ 2m%, representing approximately the squares
of the relativistic energies (m+ W}' for small W.
With fixed Q', we will now find the mass squared
of the states rising linearly with energy, and no
quark mass to decide upon.

With this clue, we are led, in the example of
three quarks in interaction, to consider an opera-
tor' (we discuss spin later}

& = 3(p.'+pn'+ p, '}

+36 A [(Q~ —Qy) + (My —gl~) +(Mq —gg ) ] + C q

(3)
where C is a constant. (The 3 and 36 are scales
chosen to simplify later expressions. ) Here, P,'
represents the square of the four-vector of the
momentum operator of quark a,

Pat Pat Pax Pax Pay Pay Paz Paz '
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The conjugate position is u,„, so p, „=is/&u, z. We

shall suppose that the propagator for baryons is
1/K. If there are perturbations -5K in K due to
external fields, etc. , we should have (K —6K) '
for the propagator. This is

1 1 1 1 1 1—+—OK —+—~Z —~K—+etc.
K K K K K K

In our example, K is separable, and the external
momentum of the entire state, P=P, +P&+p, , cen
be separated from the internal motion (which, in

turn, can be separated further into normal-xnode
oscillators) . Le't

tion of the state i with mass ng; to propagation of
the state j with mass nz,- is simply the matrix ele-
ment

N, , =(b, (g, q)(bKIb, (g,. q))

This, being the matrix element of perturbations
in eigenvalues of I", is what goes directly, for N,
into the usual relativistic rate formula for two-
body decay of a system of mass ng, into parts of
momentum Q,

I'=, jf /NJ' —.
1P. = 3I' - 3 5,

1 1
PQ 3+ 6 5 ~ I&2v'3

1
Pc 3P+6 h+

2V3

with the coordinate opex ators

u„=A —2x,

My =8+x —P3y,

Qq =A+ x+ v 3y,

(4a)

Evidently, since K is like the Hamiltoriian of an
harmonic oscillator, its eigenvalues will be a
succession of integers N times 0, so the mass
squared can grow linearly with the angular momen-
tum. We shall leave into C those energies for
which we have not developed a dynamical explana-
tion. For example, it must contain a term for
each strange quark, and some spin and unitary-
spin exchange terms .to generate the numbers (1).

We have, however, the serious difficulty that we
have oscillators in four dimensions and the exci-
tation of the timelike mode gives trouble. For
example, the lowest state (ground-state function
in momentum space) is

where 8, x, and y are conjugate to the momenta
I', $, and q. Then

where%, which we shall call the mass-square
operator, depends only on the internal motion and
ls

-3I=2$ +2q +2Qx +20 y +C,

two harmonic oscillators, each giving eigenvalues
spaced by Q.

The propagator between disturbances 1/K now
becomes (I"-X) ', and it may be written in terms
of eigenfunctions b, (t', q) and eigenvalues R; of the
operator X in the form

=gb,.(t, q), b, (], q), (7)

where h is adjoint to A, in a sense defined below.
The quantity P propagates from distuxbance to
disturbance as a constant, changed at each distur-
bance by the total momentum brought in by the dis-
turbance. Putting this together and looking at the
poles, we see that we are representing the prop-
agation of an object having one or another value of
the square of the mass,

m. 3 =m.

given by the eigenvalues of %, and the amplitude
that a disturbance makes a change from propaga-

b.(h, n) = exp[(('+ n')/2&]

=-p([(p. -P.}"u. -p.)"V. -~.)']/~].
(11)

The space parts of g' = (,' —$,
' —$,

' —$,' present no
trouble, being expected from the Gaussian wave
functions for the nonx'elativistic harmonic oscillator.
However, the time variable leads to meaningless
integrals. We see this difficulty again if we write
% in the following more formal fashion. I et a„*
and a& be a set of cx'cation and annihilation opera-
tors related to the variables $„as follows:

a '/' 1/2
(a*+a), x= -i

2
(a* —a}; (12a)

and likewise put

n '/' 1/2
(b* b), y=- „(b*-b), (12b}

with the commutators [a„,a„*]= [b„,b,*]= -5», where
5„,equals -1 for space, +1 for time variables.
We can write

and suppose that the excited states are given by
multiplication of ho by various powers of a* or 6*.
The first-excited states of the oscillator ( would
then be a„*h„a,*h„a~h„and a,*h,. When we take
sums of states for tests of unitarity, etc., we
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shall need the adjoints of these, h,a„, h,a„,hpQ„
and —k,a, . The latter is such that in taking norms,
invariant expressions such as h, (a„a„*+a,a„*+a,ag
—a,a,*)h, will arise. Thus the rule for forming h,
adjoint from h= (oper. )h„ is to take the complex
conjugate and change each a„*, b„* in the operator
to a&, b& if p. is a space index, and to —a„, -b& if
it is a time index. The time states can have nega-
tive norm (and positive energy).

We shall suppose that only the spacelike excited
states exist and compute matrices such as N, ; only

for those i and j which involves space excitation.
The criterion is that only those states, I h), are to
be used that satisfy (P a) Ih ) = (P h) Ih ) = 0. Our

simple theory will then not be really able to deal
with nature in a complete way. For example, there
are a number of sum rules for the electric current.
For them to be satisfied, a relation like

Z(hie" *li)Vle*"'I&)=(hie'"""'*I&) (14)

Now (ole"*Ij)*=(-I)"~(jle"*I0), where n, is the
number of timelike excitations in the state j. Thus,
if we restrict ourselves to spacelike states only,
our sum

I(o I
"'li) I'

p =space only

will exceed unity, because the time-state contri-
butions have not been subtracted away.

Thus our matrix elements could be expected to be
too large, and so they turn out, in comparison
with experiment, to be. To remedy this in a pure-
ly ad hoc and arbitrary fashion, we have chosen to
multiply each matrix by an adjustment factor anal-
ogous to the exp(-const Q') of the nonrelativistic
oscillator. This is to replace a factor exp[const
x(q, -Q')] which the relativistic oscillator gives.

We have chosen the form

-M1'@'
F =exp (15)

for the adjustment factor for a matrix element of a
junction of three lines of four-momenta Py. P2,
and P3 so Py+ P2 + P3 = 0. Here M,' = P,', etc., and

Q is the space momentum of one of the particles 2

or 3, in the system at rest with respect to particle
1. The combination My Q' is a symmetrical invari-
ant,

must be satisfied, and is satisfied if we sum prop-
erly over all states. To see the kind of error we

make in leaving out the time states, choose qy Q2,

k=i =0, say, to get

Q(ole""lz)0 le-*''*I o) =1.

M, 'q' = (P, P,)' P-,'P, '= (P, p, )2 p, 'p, 2

=(p, p,)'- p, 'p, '

= 4(Mi +M2 +M~ —2M, M2

M = 3Q e„[P g(u„) +g(u )P ], (1V)

where the sum on n is over the quarks a, b, and
c, and where e, is the charge operator on quark
a (e.g., +—', if a is of type u, ——', if of type s or d).

Thus, for the interaction with a wave of polariza-
tion vector, e&, and momentum carried in, q» we
have the interaction, j"„e„,where

f,=3Zen(Pgyj e" ""'yj *' ""&~) (18}

(In second order there is an extra, coupling from
theterm —+„3e~ [A(u„) A(u~)].)

For the axial-vector current, we need merely
replace y„by iy,y„,

3p =3~2 en(/nysype ' "+ysype

as can be seen by starting from the Dirac equation
in an axial-vector potential B„,(p- y, jf)g= mg,
and squaring it to get an equation for m',

(19}

(16)
The denominator M, '+M,' was chosen arbitrarily
to try to imitate the lack of dependence of the coef-
ficient of Q' on the mass of the state in the non-
relativistic case. Nothing is sensitive to this pre-
cise form of the denominator; a constant would
probably do as well with a newly adjusted coeffi-
cient to replace 1/A. We have chosen the coeffi-
cient 1jQ to be the same for hadrons and mesons,
to fit the data. (We do not have a theoretical argu-
ment for this equality and may have allowed our-
selves an independent choice for mesons if the
data warranted it. Therefore, strictly we should
say that we have two adjustable parameters in
these factors, one for hadrons, one for mesons.
The results are not at all sensitive to these
choices. )

The quarks have spin —,
' and our expression (3)

for K appears not to involve spin. We do not desire
any complicated involvements in view of the appar-
ent lack of a strong spin-orbit coupling in the bar-
yons. This we can arrange by interpreting P,

' as
the square of the Dirac operator pp, =(p,&y&)
&&(p,„y„). This changes the equation in no way —it
only defines the perturbational effects of electro-
magnetic potentials. When an electric potential
A„ is present, we are to replace p, by p, —e,g(u, ),
so the first-order perturbation in such a potential
1s
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Thus the rule for axial-vector currents is to re-
place P, by P, —e,'y, Pt, where e,' is the axial charge
operator of the quark (depending on which unitary
component of axial-vector current is wanted). The
divergence of this current is evidently

iq„-j &

——3Q e„'(fj~yge""& + yge '"~f1„) . (20)

Now, again we have too many states and shall have
to make some restrictions, The unperturbed K,
expression (3), does not involve y„and therefore
does not tell us the direction in which the four-com-
ponent spinors of the quarks must point. That is
fine for the two spin components, for Ce do not
wish to couple the spin direction. But neither does
anything govern the size of what are often called
the small components. How do we know that we
have, properly, the spinor of a quark particle and
not of an antiquark? In Dirac theory, g satisfies
P'g =m'g, but in addition, jig =mg, and the latter
further restricts the spinor. Here we have lost the
latter condition and must replace it by another. We
choose the criterion that the spinors for each quark
are pure quark states in the rest system of the ex-
cited state. Thus we add the three restrictions

yaph; =mph;,

1

2v2 '

. 8 (ub-u, )
Z =-2—=

8$ 2v'2

to get

where

-X=+-2'f'+ 20'8'=-QC* C (24)

g 1/2 1 1/2
(c*+c), z = i —-(c*—c).

2 ' 20

The ground-state function h, (which would, in mo-
mentum space, be exp(g'/20) = exp[(P, —Pb)'/0])
satisfies c„ho=0. Again we suppose that excited
states are spacelike,

omitting a constant term. We choose the —,', 0' so
that the Regge slope will be the same as for bar-
yons, but we have, in our model, no explanation
of this remarkable fact. Now we take P=p, +P, and
g for the internal momentum,

1
pa= aP

P~y~~h] =m]h;, (21) (P c)h=0.

Ppy, ~h; =m;h;,

on the eigenstate h& of the mass m„where P„ is
the four-momentum of the state and P'=m&'.

This again restricts the states, plays havoc with
the sum rules, and will require attention in deter-
mining the adjustment factor. The way we handled
this is discussed below.

The spinors should be normalized so that for
each one, uu =1. Usually, in electrodynamics we
normalize so that uu = 2m and say that the current
matrix element is u,y„u, . But now, since we are
using for the current operator the matrix element
u, (ji,y„+y„P,)u„we shall. have to normalize uu to
1 to get the same answer. (That is because we are
using operators perturbing m', whereas in the
usual Dirac theory the perturbations are of the
operator m=P -g.)

MESON DYNAMICS

We represent mesons as states of a system of a
quark and an antiquark. If p, is the momentum of
the quark and P, the momentum of the antiquark,
we may write for K

For the problems we discuss here, it is easiest
to describe the antiquark simply as another quark
of opposite charge. Then our vector current be-
comes

(25)jq =2+e (8 yq+ypjj)

with e, equal to the charge of the quark and e~ the
charge on the antiquark (e.g. , --', for u, +—,

' for s
and d). Similar expressions obtain for the axial-
vector current and its divergence, with the factor
3 replaced by 2 in (19) and (20).

Spinors are again projected (thinking of the anti-
quark as simply a quark of negative charge):

pyaph = m;h;,

P~y~ph; = m)h; .
(26)

ELECTROMAGNETIC INTERACTIONS

Having the states as described in the Appendix,
we now turn to computing the matrix elements of
various operators. We begin with the photoelectric
matrix element. If the polarization of the outgoing
photon is e„and it carries a momentum q from the
initial state of four-momentum P, to the final state
of momentum

K = 2(p, '+ p, ')+ —,', 0'(u, —u, )', (22) P2=Pj.- q, (27)
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then our mass-squared perturbing operator is
j"„e„, where j„ is given in (18). Because the states
are symmetrical in the quarks a, b, and c, each
term in the sum on o. gives the same result, so we
can just take the term on the first quark a and mul-
tiply by 3. We move the operator e"'"& to the left,
so that Pe"'"~=e" "~('P, —4I). We use the Dirac
matrices

Y 0 1
Y Y 0

(28)

where cr are Pauli matrices, and get, putting p,
=(e., p.), q=(v, Q),

Ot =9e,e" "~[(2'e, —v)e, —n, (e,Q —ve)

—(2p, —Q) ~ e y i g ~ (Q x e)]. (29)

z+m, 1/2, , 0 I,

where A., and A2 are two-component spinors de-
scribing the spins in the rest system of particles
1 and 2. Each one of the three quarks has a spinor
of this kind with various A. corresponding to the
spin. In the operator (29), although the dependence
on a quark a is explicit, there is an implicit oper-
ator 1 on the spinors of quarks b and c.

Now' we specialize to a particular coordinate sys-
tem in which state 1 is at rest, P, = 0, and the pho-
ton goes off in the z direction; Q is purely in the z

direction. Note that

P, =-Q and E, =(m, '+m, ' —m, ')/2m»

where we have written m, ' for q' (for photons

m, '=0). Note also that A., =(o), (',) give directly the
helicity amplitudes.

Now y,
=(a* x*(o Q)/(2m, g'))g, where

The Dirac spinors for the initial state 1, and the fi-
nal state 2, are taken in the direction of P, = (E„P,)
and P, =(E„P,) =(E, —v, P, —Q), respectively. Thus,
in the representation (28),

(m, + m, )' —m, ')'"

The factor 1 on quark b now gives a factor like

(3o)

and

A. q

Z, +m, "'
1+ m1

(x„x„)=g(~.*~ ~»), (31)

or simply a factor g times the unit operator on the
Pauli spinors. Quark c gives the same.

The expression (29) can now be evaluated as an

operator on the Pauli spinors,

2

9g'e, e"' 2e, —v — e, —2p, e+[Q ~ e+io, (Qxe)] 1+
2m. m2g

(32)

where e, and p, are the time and space components of p, .
Expressed in the normal-mode coordinates (4a), P, = ,P —3$ or e, =-,-my 3$g p, = ——,$. These and u,

can be further reduced to expressions in a and a* via (12a). When the center-of-mass motion is taken out

(a factor expi[q —,'(u, +u, +u, )]), e"'"' becomes

2 1/ 1/2 2 1/2

e "'"=exp — — (a* —a) ~ q =exp(q'/Q)exp — — (a* q) exp + — (q a)0 0 (33)

where we have used the commutation relations to reduce the expression to one in which all the a appear

first on the initial state and all the. a* last, or directly on the final state. This makes the evaluation of

matrix elements easy. In a like manner, we find

1/2 g 1/2 g 1/2 2 1/2
e '" "$ = exp(q'/Q)exp —— (a* ~ q) — a*+ — (a —q) exp + — (q ~ a)0 2 2 0

so that

q2 g 1/2
K = 9I'e exp — — q ~ aV 2 1 2

0
—m ——@-

2m &2
(a +a) e

2

(34)

V
1/2

+-,' — (a,*+a) e+(Q e) —,'+ +io, (Qxe) 1+, exp + — q a
2m2 g I

(35)
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where we have replaced a factor exp(q'/Q)&&g' by
E [defined in Eq. (15)]. We have already explained
our reason for the replacement in the case of the
factor exp(q'/Q). The reason for including the g'
is similar. The factor g in Eq. (31) seems sur-
prising at first. With no direct perturbation on the
b quark there should be no projection factor into a
new direction, surely not one greater than unity
(g is greater than unity). It comes because we ar-
tificially (i.e., not for dynamical reasons) take the
Dirac spinor as that of a quark, and not of an anti-
quark, in the direction of the four-momentum of
each baryon. Thus, when going from one direction
P, to another P„ the proportion of small compo-
nents changes and there is a projection involved.
If we took all possible states, quark and antiquark,
for the spinor, a sum rule like (14) would remain
valid, but taking onl.y quark states gives too high a
result. We have chosen to omit a factor g' for bar-
yons (one g for each quark, hence g' in the case of
mesons), and imagine it to be replaced, along with
exp(q'/Q), by our adjustment factor F.

Thus, explicitly, we replace a factor

g'exp(q'/Q) (36a)

by + in all baryon-baryon matrix elements, and

g'exp(q'/2Q) (36b)

g X/2 Z/2

3 2
(0 ' q+0' q) exp + q'Q0

This makes transitions of internal motion having
components excited by the operator q a*. Suppose

by E in all meson-meson matrix elements, where
E is chosen as in Eq. (15).

There is one further detail. We should like to
describe the internal harmonic-oscillator excitation
of states in their own rest system of coordinates,
so that the algebra of the a* is simple for each
state. Hence in (35) we must consider a* compo-
nents t', x', y', z ' in the system of the final states.
This is easy to read from (35) because a* appears
only in four-vector combinations like q ~ a* =

q& a&
or e&a&.

We have left the result (35) in general form so
that we might someday use it for electron photopro-
duction, where q'10 and e, t0, but we shall not
make that application here. We may, however,
stop to check the gauge invariance. From Eq. (3)
and the manner in which we defined j&, it is easily
proved, of course, if C is a true constant. Putting
(e„e)=(v, Q) should give zero. The matrix we get
with this substitution is

we consider first the oscillator in the q direction
going from state n to state m, so the initial state is

~) (. (~* q)"Ih.&,

and similarly for the excited state. We find

&~Jx'„„,f~&

1/2
=factors(h, i(q a) exp — — q a*0

x[m, ' —m, ' —42Q(q. a*+ q a)]

1./2
&&exp + — q a (q a*)"ih,

&

= factors [m, ' —m, ' —(n —m)Q]. (37)

Thus, if the mass laws were exactly given by the
harmonic motion, m, ' —m, '=(m-n)Q, the result
is zero. Because of the contributions in Eqs. (1)
and (2) to the constant C, this is not strictly true
The operator e, makes no change in strangeness
nor in the spin state (doublet to quartet), so the
dependence of C on the number of strange quarks
or on the spin relation has no effect. But among
doublet states we have mass differences, for ex-
ample, we have 0.40 GeV' for '(10)-'(8) of the 70
and 0.45 GeV' for '(8)-. '(1) [from the figure 1.25
GeV' in (1) for '(1) you must subtract 0.40 GeV'
for the strangeness to compare with the A in '(8)],
and finally 0.42 GeV' for '(8) 56 to '(8) 70. To
represent these by operators in C, a unitary spin
exchange permutation operator would be necessary.
(Very roughly, C seems to have contributions
-0.40 times the mean of the spin-exchange opera-
tor, -0.40 times mean unitary-spin exchange, and
+0.40 times mean space exchange; this is -0.53
for each pair interaction antisymmetric in both spin
and unitary spin. ) But such a term produces ex-
change currents, as is well known from the corre-
sponding problem in nuclear physics. Thus our
current is not strictly gauge-invariant if we use the
true experimental masses in expressions for the
matrix element. Nevertheless, we shall do just
that and leave the omission of exchange currents
as one of the complicating problems for the future.

In application to finding the photoelectric matrix
616nlents needed for Rna1ysis of the production of
m's by photons on protons or neutrons (the only
cases for which data are available), we can make
a number of simplifications in (35).

We take q' = 0, q e = 0, Q in the z direction, and
suppose the polarization vector 6 has transverse
x and y components only; then, noting that we take
the timelike oscillator of the final state in its
ground state,
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1/2 1/2
K =9Fe exp + — Qa — — (a +a) eV 2

0 ' 2

g. (Qx j)(1+ )I
exp -(—

) Qa,

tons (P) or neutrons (n). In column 5 we give the
formula for the matrix element of St~/& in each
case, where

(38) q = (m, ' -m, ')/2m „ (3S)

The first term is from orbital current, the second
from the Dirac magnetic moment of the quarks.
Note that for q'=0, I+ v/2m, g'=2m, /(m, +m, ).

In our applications here, the final state is always
a nucleon with the oscillators in the ground state,
so that all a* in (38) may be replaced by zero. The
resulting photoelectric amplitudes are given in

Table I.
The first column gives the state the conventional

symbol for its wave in pion scattering, and the
second column its multiplet designation. We can
consider the photoelectric amplitude as the ampli-
tude for photoelectric disintegration into nucleon
and y, such that one state emits a photon of helic-
ity +I from either a e component of spin +-', (so
the emitted nucleon has spin +-,') or +-,' (so the nu-
cleon has spin --', ). In columns 3 and 4 we give
this helicity, and whether we are dealing with pro-

p=Wn ' ) =&2(m, -m, ).
mJ+mQ

From (f ~St ~i) we have calculated the matrix ele-
ment A that Walker' tabulates, which does not use
the relativistic normalization, so that

A =(4me')' '(2m, x2E, x2Q) '/'(f ~st ~i)

= (27re')' '[m, /(m, -m, ')]' '(f [rC [ i) . (40)

First we give our value for A, then Walker's val-
ue computed from a nonrelativistic quark model
in which he chose the quark mass equal to —,

' the
proton mass, and the quark moment equal to the
corresponding Dirac moment. We have no choice
of parameters here at all, except in our form fac-
tor I'. Finally, in the last column, we give ex-
perimental figures, without probable errors,
from Walker.

TABLE I. Photoelectric matrix elements.

State

Z»(1236)

D g3 (1520)

Sing (1535)

Multiplet

4103y2[56, 0 ]0

8 y)[70, 1 1 g

Hgg2[70, 1 ]g

+—32
+—12
+—32
+—12
+—32
+—12

+—12
+—12

(f I
~'i &/~

—vip
—sap

+Ma
-&3~ +($)'&Ma

-vn
+ (3')'/'~~ —(3')'&Wn

+(-',)'/'~ +(-2, )'&Fn
(y)1/h)v P )1/i~@

-0.187
-0.108

+0.109
-0.034
-0.109
-0.031

+0.156
-0.108

-0.178
—0.103

+0.112
-0.029
—0.112
-0.030

+0.160
-0.109

A (GeV «) AN (GeV ~~) P (GeV /2)

-0.244
—0.138

+0.151
-0.026
—0.132

+0.096
-0.118

D i )(1670)

$„(1650)

D»(1670)

P (i (1470)

Eg~(1688)

u (784)

A(1520)

8 g/2[70, 1 ] g

10 f/2[70, 1 ](

103/2[70, 1 ]g

8gp[56, 0+]2

'8,&, [56,2'],

3$

13/2[70, 1 lg

+—32
+—12
+—32
+.—1'2

+—32
+—12
+—12
+—12
+—32
+—12
+—32
+—12

+—12

0
0

-(~))'"w
+( fI()

'
AP

(P)
1/2) ~ (2 )1/2 ~()

+aO
+(-')'&~ +(-,')«'v a

[+ (-,)'f'~]X
[-(-,') '/'~]a

[+(&)'/'"~n]z
(K)112~ + (2)ip~g]g

0
[+( f) '/'~ 1 m

(1)1gp

+pvO

-fh'a ~ —(-,')'»Wo)

0
0

-0.053
+0.038

+0.047

+0.084
+0.088

+0.027
—0.018

+0.059
-0.010

0
+0.035

0;172

+0.107

+0.012

0
0

-0.053
+0.038

+0.047

+0.091
+0.092

+0.032
-0.020

+0.070
-0.015

0
+0.041

0.040?
=0

+0.139
~p
~p

0.13+ 0.01

0.095~ 0.010
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TABLE II. Transition amplitudes d'or decays into ground-state baryons and pseudoscalar mesons.

State (mass) Multiplet Mode &/ I
&~I ~&/&

s»{1236)

Sop (1405)

@03(152o

S«(1535)

D g3 (1520)

Qg {1700)

g) „(ievo)

s„{1650)

D»(ievo)

P (((1470)

&~3(

E()(1688)

z„(191o)

~33(

I"3~(1890)

z„(1950)

&0~(

P «(1780)

P(3( )

s„( )

&03(

&OS(

I f3(1860)

p ( )

&gg( )

+f5(

2.3Q

2.79

2.16

3.65

3.57

4103(2[56,0 ]0

'1,p[70, 1 ]g

'1» [70, 1-],
'8»[70, 1-],
283p[vo, 1 ]g

48(@[70,1 ]q

'8,p[70, 1 ]g

8gpf vop 1 ]f

'io, g, [vo, 1 ]g

1Q3/2[voy 1 ] f

28)(2[56, 0 ]2

'io, y, [56,0'],
28 „,[se, 2'],
28~p[56, 2 ]2

410 gp[56, 2 ]2

10 3(2[56,2+]2

41o,g, [56,2'l,

4107p[56, 2 ]2

21gp[70, 0 ]2

28(y2 f70, 0 ]2

483p[70, 0+]2

210 gy2[70, 0 ]2

21»[70,2'],
'1,(, [vo, 2']

2

8 3p[70, 2 ]2

28)p f VO, 2+]2

'8,p[70, 2']2

'8,p[vo, 2'],
'8»[70, 2'],

Nr

Nr

+W2[A.q(1+6) —3p]

—2[Ay(1 +5)]

+Kg 6[A,y(1+6) —3P]

-~W3[A.~(1+~)]

+~2We[A.~(1+~) —3p]

—
~) M30 [A,y(1 +6)]

—
g~ W30 [A,y(1 +5]

+&We [A.q(1+6) —3p]

-', W3[A.y(1 +6)]

~~W3[A.q(1+2a) —2p]A.

-', We [A.q(1+2&) —2p]A

+', ~is[A.~(1+26) —SP]A

+&~].O [A,y(1+26)]A,

+ —,',~15 [A.~(1+2&) —Sp]A.

&~j.s [A,y(1+25}—5p]A,

,—'„M35[Ay(1+24)]A.

~,—'„V'2.10[Ay(1+2')]A.

~-', W2[A,q(1+26) -2p]X

g ~ We[Ay(1+26) -2p]A,

~-', We [A.~(1+25) -2p]A.

y~ W6 [A,y(1+26) -2p]A.

+-', ~10 [A.~(1+2~) —SP]A.

-', v iS [A.~(1+2~)]A.

+44, W30 [A.q(1+26) —sp]A,

+ () W5 [A,y(1+26)]A,

--„~isfry(1 +M) —sp]A.

~&~15 [A.y(1+26) —SP]A.

+ ~~ W35[A.y(1+2~)]A.

E„(199O)

&33(

&3S(

E(242O) 5.86

'8,p [vo, 2'],
'10 3P f 70, 2+]2

210 ~F2[70, 2+]2

410 «@[56,4+]4

—@~V210 [A.y(1 +26)]A,

+-,', ~30 [A.~(1 +2S}—SP]A.

—p)W5[ A.y(1 +26)]A,

+—, ($)'~[Ay(1+46))A. '
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PSEUDOSCALAR-MESON INTERACTIONS

%e shall calculate decay widths of excited hadrons into a pseudosealar meson and another hadron by
replacing the pseudoscalar-meson interaction by the divergence of an axial-vector current {20), in the way
usually done for PCAC (partial conservation of axial-vector current) or in studying the Goldberger-Treiman
relation. The "charges" e' are replaced by the SU„SX3 matrix X appropriate for the particular member
of the meson nonet. For neutral mesons, where X is diagonal, the formula (20) is directly applicable, the
"charges" e,' being the diagonal elements of ~. Details are given in the Appendix.

Proceeding in exactly the same way with the axial-vector current (19) as with the vector current, calling
the polarization e'„and the charge e,', we find, for the expression analogous to (35),

Ot"=9iFe,'exp —— (q a*) (o, Q) -', e,'+

n '" n "Q (a+a+)
+(o. e') —,'(m, +m, ) --,'— (a, +a,*)—=', —

2

1/2 Q .e t fl 1/2 Q y e s 2 I /2

+ — o (a+a*) —', e,'+ —,'+i —' — (a+a*) exp + — (q a)0 2kB 2g 2m, g' 0 (41)

Putting e„'=-iq» we find the matrix element of the

divergence of the axial-vector current which we

shall use as the pseudoscalar-meson coupling; so,
calling the matrix Otp, we find from (41), taking

Q in the e direction, q = (v, 0, 0, Q),

'R = 6Fe,' e' "[yo„—y X5o„(a+ + a, )

o'(a" +a)=o, (a,*+a,)+&2o, (a* —a, ) —W2o (a,* —a ),

(44)

where

o, = —,'(o„a io„),

+ Po. (a*+a)j.-x (42)

1
a, =+~ (a„+ia,).

where (we have assumed that a, and a) give zero
on our states)

3 3'
@=ming 1+

{43)

0
(m, +m, )'-m, ' 'y5=m, Q

For calculational use, we write

These matrices are now evaluated in a direct
way from the wave functions in the manner de-
scribed in the Appendix. The results of these cal-
culations for pseudoscalar-meson emission ampli-
tudes appear in Table H, where we give one repre-
sentati. ve amplitude for each multiplet. Amplitudes
for other states in the same multiplet can be found

from the F/D values in Table VIII in the Appendix.
The calculations with meson states instead of

baryons proceed along the same lines in an obvious
way but are simpler, so no details will be given.
Because the states are not fully symmetric in the
quark and antiquark, one does not avoid the sum
over u, but computes each term (or else one can
divide the matrix into a symmetric or antisym-

TABLE III. Transition helieity amplitudes for meson decays.

State (mass)

p+ (765)

B'(1235)
4+ (966) 'P

A. ', (1070)

A', (1300)

Multiplet

3$

'I'i
3Q

'P i

'P2

Mode

+2&2[ya(1+5) —P]

+32V2 f.yA, (1+6) -3p]

+2lyz(1+a) —2P]

+2[.yA, (1 +6)j
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TABLE IV. Transition rates for decays into ground-state baryons and pseudoscalar mesons.

Sta~e

A(1236)

Z(1385)

(1530)

A(1405)

A(1520)

N (1535)

A(1670)

N (1520)

Z(1670)

A(1690)

=-(1820)

N (1700)

N (1670)

Z(1765)

A(1830)

=-(193O)

+1650)

z(1v5o)

a(16vo)

N (1470)

N (1688)

Z(1915)

Multiplet

10 3/2[56, 0+]0

103/2[56, 0 ]0

10 3/2 [56, 0+]0

'I, /, [70, 1™l,

3/2[70~ 1

8g/2[70, 1 ]g

8g/2[70, 1 1(

's» [70, 1-],

83/2[70, 1 ](

83/2[70, 1 ]g

83/2[70, 1 ](

8g/, [70, 1 ](

8)/2[70, 1 ]

48
5/2 [70, 1 ] )

485/2[70, 1 ]g

85/2[70, 1 ]$

/2[70, 1 ]

'1O, /, [70, 1 ],
2s, ~ [56, o+],

8g/2[56, 2 ]2

8 5/2[56, 2+]
2

Mode

Nm'

Ng

ZK

Nx
Nq
AE

Nx

I'
g (MeV)

7
12

220
71

22
6

415

105
0.2

3
6

49

102
11

15
4

17
10

45
112

0 (74)

36
7

0 (0.2)

66
25
10

6

0 (48)
73

83
24

14
9
4

30

64
0.07
0.27

3
15
24

~exp (MeV)

120

40

40
77

11
8
5

60
~Q 7

16
21

182

13

60
&1

&0.1

53
17

I+aJ 1
15

11
33

-10

31

150

75
&0.1
&0.6

ca].c/ I exp)

-0.2
+0.1

0

+0.5

+0.3

0
+0.5

+1.7
-0.1
+0.7
-0.3

+0.6

+.1.9
-0.6

-1.4

-0.5

+0.2
+0.4

-0.9

+0.8

-2.9
-0.1

—1.0
+1.1
+2.1
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TABLE IV. (Continued)

MQI't1plet F~~y~ (MeV) 1~x (MeV) In(r„„jr,„)
A(1815)

=-(1930)

'8,~,[56,2'],

'8, /, [56, 2'],

-0.4
+0.4
+0.1

~(1910)

6(1890)

6(1950)

Z(1780)

N (1860)

'10» [56,2'],
'10» [56,2'],

10 zp{.56, 2+]2

8 ((2 [70, 0+]
g

'83(, [70,2'],

103
7

43
0.1

28
37
17
1

0.5

90
5

100
3

+0.6

+0.1
+0.3

0
0

+1.7

-5.5
-0.2

X(1990)

6(2420)

48 z/2[70, 2']
2

'10 ~~/2[56 4']4

-0.5
-0.3

metric sum). All couplings are either pure I" or
pure D. The expression for % is the same as
(42) with a replaced by c/&2, a factor of 4 instead
of 6 in front:, and y for mesons changed to

2mB'

( (m +I )' -m ') ' (45)

(48)

Hele 2R/(Rcl+1) ls a multiplicity factol, and cI is
the initial-state angular momentum when the ma-
trix element is for one helicity only. The factor
2 in 2R is from the two helicities of the final bar-
yon when we consider decays into baryons with
spin —,'. A is the inverse of the squared Clebsch-
Gordan coefficient connecting the initial isospin
state with the isospin of the final state. For in-
stance, if we calculate the amplitude for the de-
cay of an excited proton into a proton and w', then

In this meson case it is a quantity g'exp(4'/2Q)
multiplying all matrix elements that is replaced by
E of expression (15). Representative amplitudes
are given in Table IH.

The widths wexe computed from the relativistic
rate formula [derived from (10)]

It =(~&) =S. (This R depends on our choice of
exactly which typical matrix element is calculated
in Tables IV and V. It would not be necessary if
we would calculate each real possibility and sum. )
For decimet-octet transitions, 8 is given in the
Appendix, Table VII. For octet-octet, A=3 for
N-Nm, N-Z'K, A-Zm, =-=m, "-ZK, while
A = 2 for A -NK, Z'- Z m, Z'- NK, and 8 = 1 for
the other cases (A or q' in the final state).

We have written the coupling as ~4w fs. We
shall adjust this constant of proportionality so
that the majority of rates are fitted. In our numer-
ical work, we calculated using that value for the
constant so that the predicted charged pion-nucleon
coupling is exactly the one observed, f' =0.08.
This means we use f„=(0.08)'~' xr'/m, = 1.21 GeV ',
leaving discussion of any further adjustment (of
about 5%, as it turned out) to after other rates,
are worked out, so this is an adjustable constant
of our theory.

The other constant, 0=1.05 GeV', we chose
from the mass spectra and considered it not ad-
justable. The only other adjustable constant was
in the exponent of our adjustment factor, in Eq.
(15).

The results of the calculations of pseudoscalar-
meson decay rates are given for hyperon decays
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TABLE V. Meson classification and decay rates.

State(mass)

0'(958)
q(549)
K (494)
F (140)

0 (1019)

cu (784)
K*(892)

p (765)

K*(1300)
B(1235)

K *(1240)
A ((1070)

f ' (1514)

f(1260)

K*(1420)

A 2(1300)

(Mass)2

0.92
0.30
0.24
0.02

1.04

0.61
0.80

0.58

1.69
1.53

1.54
1.14

2.29

1.59

2.01

1.69

Multiplet

's,

P

3p

Mode

KK
K*F
pK
cd
KF
FK
Kg
r]K
PF
nF
'n
KK

I'cage (MeV)

10
0
0

66
159
157

85

60
161

103
15

0
244
13
22

8
2

87
140

5
4

66
22
45
17

1"exp (MeV)

3.2

51
51

125

102

90
95

52
7

&10
145
~5
35

8
4

48
48

64
16
16
10~

ln(I cage/ I exp)

+1.1

+0.3
+1.1
+P.2

-0.2
-0.4
+0.5

+0.7
+0.8

+0.5
+0.9
-0.5

0
-0.7
+0.6
+1.1
+0.9
+0.7
+0.0
+p.3
+1.0
+0 5p

in Table IV. In this table, the first and second
columns give the state and multiplet assignment,
the third gives the mode of decay. We do not give
the calculated matrix elements, but rather only
the fully calculated width I" to be compared with
experiment. Next we give I',„ from the 1970
Particle Properties Tables, and to make compari-
sons the last column gives 1n(1'„„/F,„p) for those
cases where I' „t0. In cases where the theoreti-
cal result is zero because the numerical coeffi-
cient in front of the amplitu~i in Table II is zero
for some special values of (F, D), we give the
answer as O(x), where x is the value one Would
get for F if the coefficient were unity. So working
backward one can see how small the data indicate
that the coefficient in fact is. %'e see that none of
these predicted zeros presents any real problem;
the experimental value is small enough for all of
them.

The corresponding table for meson states is
Table V. In this table we represent the A, as a
single resonance of width 90 MeV. '

x 1+, 33/1
2mg

Here m, =m„so that [see Eq. (30)]
g= (1-q'/4m')'~' and 1+ v/2mg' = 1/g',

(4V)

with q' negative. The factor 2m appears because
this is the operator for perturbation of m' and is
2m times the ordinary perturbation in energy at
rest. The numbers in parentheses are the (F, D)
to be taken in the U-spin direction: I'+ —,'D for the
proton, -3D for the neutron.

Studying first the case q'-0, so the adjustment

COMPARISON TO EXPERIMENT

1. Diagonal Matrix Elements

We discuss first the diagonal elements, beginning
with the matrix elements of currents (35) for the
fundamental baryon octet. Using q ~ e = 0 or Q ~ e
= ve„we find that the current couples as

2mF e, 1 + , (1,0) + io .3q' . (Qx e)
2m



F EYNMAN, KIS LINGER, AND RA VNDAL

factor is E = 1, we obtain the correct charge, of
course, to multiply e, and a magnetic moment [for
f(Qx e) is the magnetic field] of +3.00 for the pro-
ton 3nd —2.00 for the neutron, in their own magne-
tons. These results are well known (if one assumes
that the quark mass should be —,

' the particle mass
and carry its own Dirac moment; but here that re-
sult is automatic: no choice of a parameter is in-
volved); they compare very well with experiment
(2.79 and -1.91). For the other members of the
octet we get the usual SU3 predictions if each is
measured in its own magneton. Thus the A should

have a magnetic moment +—,
' that of the neutron, or

-1.00 of its magneton, or -0.84 nuclear magneton
(the experimental result' is -0.73 +0.16).

If for finite negative q we compare (4V) to the
usual expression in terms of the conventional form
factors, which works out as

while the experiment is nearer 1.22. This is not
much more discrepancy than we will accept for
later matrix-element comparisons. But a diagonal
element for a low state should be particularly good.
The predicted F/D ratio here is -', . (A recent eval-
uation' of the leptonic hyperon decay gives I'" = 0.49,
D =0.74.) This is a specific but well-known predic-
tion of the SU, aspect of the model.

We can calculate, from matrix elements of j&,
the form factor for the coupling to K and z in the
Kiev or Key v decays. This is usually written

f (q')8, + v„)+f (q')(&, v„)—
We find

,) (rc...„)
2q

m»+m, ' —q'

2mg ' e,G»(q')+sg G„(q'),(4&& e)

we see that we are predicting that

(48)

(49)

2(m»' —m, ')
(-.:-,) -'"

This gives us a predicted value of

(p is the magnetic moment). Experiment' indicates
that this ratio does decrease with increasing -q',
but slower than (49). For the magnetic form fa.ctor
we get

N g-1P 1 ~ exp 9 1

(50)

with m' and 0 about 1 GeV'; q' is negative.
The result (50) is completely wrong, because ex-

periments indicate a function roughly like

6„=(1 —q'/O. V1) ', (51)

which falls off faster at first [like 1+2.8q' instead
of like (50), which goes as 1+0.64q'] and is defi-'

nitely slower than a Gaussian for large q'. We may

not expect good resu1ts from our model for large

q, for it is based on getting low-energy reso-
nances correctly, but the small-q' results show

that something else must be seriously wrong. We

have not represented the p or ~ pole; but to start
in that direction requires an elaboration of our
naive model that we do not know yet how to define

generally. Clearly the model is too simple. The
replacement (36) is not the cause of the serious
discrepancy between (50) and (51); if we had not

made that replacement we would have found G~
=(1—q'/4m')x exp(q'/0), going as 1+0.72q for
small g .

For the axial-vector current for a proton at rest,
we obtain the well-known result that the axial-vec-
tor coupling should be

$ = f (o)/f. (o) = —1 11 (55)

while polarization experiments" give -0.94+ 0.20.
If we write f(q') as f(0)(1+Xq'/m, '), we predict
[the factor E is 0.956 (1+0.013q'/m, ')]

x, =0.11, x =0.06,

whereas, experimentally, A.,= 0.04. These A.'s are
rather subtle properties; the agreement with $ is
probably more significant. The experimental fact"
that f, (0) = 0.94+ 0.05 agrees with our predicted
0.96. Had we used the factor g exp(q'/20) instead
of I' here, we would have had a very serious dis-
agreement, for g'= 1.45, so f, (0) would be 1.45.
All theoretical arguments and experimental results
confirm that there should not be such a large re-
normalization of vector current and that f+(0)
should be very near 1.

The formula (54) predicts a ratio for I'(K»)/
I'(K„) of 0.65, whereas experiment' gives 0.65
+ 0.02.

2. Photoelectric Matrix Elements

To the photoelectric matrix elements in Table I,
the form factor E makes no substantial contribution.
It ranges from 0.96 for the 6(1236) to O. V8 for the

E„(1688). As it is, we see that our relativistic re-
sult is close to Walker's nonrelativistic result' —so
that one could say only that our relativistic analysis
confirms the choices made in the nonrelativistic
model and has eliminated any effective free param-
eters (other than the observed masses and 0, of
course). The agreements shown here, in particular
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the small (or zero) values predicted here just when

the experiment gives zero, impressed Walker. Some
of the results depend on our choice of a harmonic
potential, others on the general way the spins and

orbits line up. In addition, the special values of
I' and D predicted by the model are needed for
some of these numerical agreements. The model
of three spin--,' quarks in a symmetrical over-all
state does seem to be strongly confirmed.

The worst photoelectric matrix element [the
F»(1688), helicity +—,

'
p] in Table I is off by a, fa.c-

tor of 2.3. We see no excuse for this as only one
term contributes (the magnetic-moment interaction
does not contribute here). Most of our meson-width
calculations give amplitudes within a factor 1.4
where there is no cancellation of interfering terms.
The S»(1535), helicity +-,' P, is off by 1.6 and is out-
side these limits also.

The sign of a single matrix element depends on
the sign of the wave function and may be chosen
arbitrarily. The signs given by Walker as coming
from experiment really tell the sign of the resonant
scattering amplitude relative to a background Born
approximation (as explained in more detail in Ref.
6). This total resonant amplitude depends theoreti-
cally on the product of two factors: One is the am-
plitude for absorption of a photon in going to a res-
onance, and the other the amplitude for the emis-
sion of a m by the resonance. Thus the sign of the
interference depends on the product of two signs:
(1) the sign of the current matrix element X~, and

(2) the sign of the meson-emission matrix element
The arbitrary choice of wave-function sign for

the intermediate resonance cancels out. Our signs
for A are products of three factors: first the over-
all sign to agree with the convention of Walker,
next the sign calculated for the matrix element of
5t from our formulas and conventions (this latter
has no absolute significance), and third, the sign
of the meson amplitude computed later. The prod-
uct of all these, as given in Table I, is to be com-
pared to Walker's experimental values.

Included in Table I is one meson photoelectric
matrix element, that for co- m+y. We obtain it
from experiment from its branching ratio in cu de-
cay. We cannot determine its sign. The good
agreement here means that we are dealing ade-
quately with the mass factors. For example, inclu-
sion of the factor g coming from spins is 1.9 in
this case, so replacing F by g' would raise the
theoretical results by a factor 2.2. This is the
same type of evidence (that g' is not there) that we
noticed in the normalization of the Kiev decay, but
here the effect is larger, and we are not concerned
with uncertainties in the Cabibbo angle.

One radiative decay of a hyperon resonance is
known, A(1520)-Ay. Individual helicity amplitudes

have not been measured; hence A. "]' is to be com-
pared to the square root of the sum of the squares
of the theoretical amplitudes.

3. Rates for Pseudoscalar Meson Emission

In order better to discuss and understand the
large number of figures in Tables IV and V, we
have made a histogram of the results, Fig. 1, plot-
ting the number of cases against the ln of the ratio
of theoretical to experimental rates. The baryons
are shaded squares, the mesons are open squares.

There is a peak near the center, from -0.6 to
+0.8, containing —,

' the cases, with the other —,
' widely

spread about, two cases at +4.4 and at -5.5 being
completely off the scale of the drawing. The peak
is not centered but the center lies near +0.1. We
can move our axis there by renormalizing all our
theoretical matrix elements down by choosing a
new fs, say,

meaning that the predicted nucleon-coupling matrix
is off to some extent, just like all the others.
Doing this, we see that our bunch around the new
center represents a spread of -0.7 to +0.7 in the
logarithm, i.e., that —,

' of the calculated partial
widths are within a factor of 2 of the measured
partial widths.

In order to get some idea as to whether agree='
ment as poor as +0.7 in the ln was significant, we
made several observations. First, the actual
widths vary from a few tenths to a few hundred
MeV, or over a range of 6 in the logarithm. Then
we tried changing identifications of particles [e.g. ,
by supposing a '(8) was a (8), or a Z was in a dec-
imet instead of an octet], thus changing the F/D
ratios. Such changes made large changes in the ln;
+2 was not uncommon and much larger (as well as
many smaller) values occurred. We concluded that
the range +0.7 was really very narrow and the
agreements with the model were of significance.

The coupling constant f„' that we eventually
choose is not the normal coupling constant, say
fr, expected from the PCAC theory [that theory
gives f (r0.08)'~'/m„g„, where g„ is the axial-
vector coupling constant of the nucleon, 1.22] but
differs by a factor, say Z, from it, fs=Zfr. We
could interpret that factor Z as a general renor-
malization of the axial-vector coupling constant
of a quark, and choose it, rather than f„', as the
adjustable constant of the theory, evaluating it
from our fit to f~, as Z =0.70. With this interpre-
tation, the only change made is that the prediction
(52) for g„would now become g„= —,

'Z = 1.17.
The next question to which we address ourselves

is whether we can learn anything about the charac-
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Number
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FIG. 1. Histogram of partial widths for pseudoscalar-meson emission.

TABLE VI. List of calculated transitions
which seriously disagree with experiment.

State J Mode 1n(I c a1c/ exp) P term

K*(1420) 2'

Z (1765)

6(1890)

N (1700)

Z (2030)

N (1535)

Q (1019)

A(1690)

Z (1915)

5

2

5+
2

i
2
't+
2

1
2

5+
2

60K

Nm

KK

NK

NK

-0.7+ 0.6

-0.9+ 0.5

-1.0 + 0.5

-1.4 + 0.7

+ 1.7+ 0.7

+1.7+0.6
+ 1.1~0.1

+ 1.9+0.6

-1.0
+1.1

N'(1470)

A(1670)

N (1780)

1+
2

i
2

f+
2

NK

+ 2 ~1

-2.9 + 0.4

+4.4 + 0.7

-5.5+ 0.6

ter of the model's failings from the nature of the
deviations. We list in Table VI all the cases for
which the ln is outside the limits -0.6 to +0.8. In

making this comprehensive table, we have used all
the data that are accepted to appear in the Particle
Properties Tables' (but not in the data card listings,
directly). Some of these data, are of poor quality
and we cannot learn much from a deviation from
theory if it is, possibly, experimental. Therefore,
in Table VI we have placed an approximate + on the
figure for the ln which is a rough range of experi-
mental widths. Cases in which this range could
bring us into the region -0.6 to +0.8 do not repre-
sent anything of significance. These cases have
been listed first and are all those before we get to

Z(2030) -Z v, which is marginal, as is N(1535)

Also listed in Table VI is a reminder as to wheth-
er the formula for the matrix elements involves a
term in P, or whether only yA. and yA. 5 (5 is positive
near 0.1, roughly) come in. These P terms sub-
tract from the other terms and an interference be-
tween two terms is involved.

For the A(1690)-N17 we have no explanation and
are unable to learn anything from it. No cancella-
tion of P terms is involved and many similar dis-
integrations work quite adequately in other multi-
plets.

We have three apparently serious very large de-
viations. They are all states of spin —,

' and involve
cancellation of two terms. Such a situation is a
sensitive test of the accuracy of the calculations.
Take the A(1670) NK at -+4.4, for example. The
theoretical value is much too big. May that mean
that the experimental value is, in a sense, too
small~ Theoretically, two terms are being sub-
tracted; they are three to one in ratio. If they
were in reality closer together, so that in nature
they nearly cancelled, then our theoretical re--
sult would be much too high. Again, in reverse,
for N(1780)-Nw at -5.5, the two terms theoreti-
cally cancel almost exactly. If in nature the bal-
ance were not so perfect, the rate could be much
higher. It is also possible that we have misidenti-
fied this state. The Roper resonance N(14"/0) has
a logarithmic error of 2.9, which may be due to
the effect of cancellations also. However, we
must remember that this orbital state requires
a special mass-squared correction of -0.82 GeV'
before it can be compared to the rest of the parti-
cles. Such a serious effect might well change the
wave functions, and matrix elements, in a serious
way. We might well question whether the oscilla-
tor model is correctly describing these spin —',
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states. In particular, the wave function of excited
states of zero total orbital angu1, ar momentum
cannot be trusted.

The other possibility is that the matrix element
X~ for pseudosealar mesons is wrong. If, for ex-
ample, we start with just y, (or y,g) taken between
the spinors (instead of P',y,(+y,gP, }, the coupling
arises without a P term entirely. This is very un-
satisfactory, because many other states that pre-
viously were all right go seriously awry [the
N(1535)-NI} can hardly occur at all, the A, (10VO)
and B(1235}do not show a reasonable angular dis-
tribution, etc.], but it does show that the precise
form of the P term is sensitive to our assumptions.

It is not easy to find a prescription to describe
these deviations systematically.

The P term arises in nonrelativistic language as
follows. In first approximation, a pseudoscalar
meson couples with o' Q and thus, as Q falls, so
does the matrix element. But take the N(1535), for
example. In fact, we shall have two powers of Q,
one from the c ~ Q and one from the retardation fac-
tor e""&, since the g must come out in an S wave.
So, for small Q, there is only a very small ampli-
tude for disintegration. If there were some way its
spin could couple to the velocity of motion of the
interior orbits instead of to the pion momentum Q,
it could use this momentum to form the pseudosca-
lar with 0 and have a finite amplitude to emit as an
S wave. Spin-orbit coupling would distort the wave
functions so as to make this possible, but we tried
to keep the theory simple and with few arbitrary
constants. When coupling nonrelativistically to a
pal tlcle of P Rlld M o ' 'Q ls I'eplRced by o ' (Q
—Pv/M), where v is the frequency of the meson,
for Q is not even a Galilean invariant while Q
—Pv/M is. If P is the external momentum of the
states, this has no effect in the c.m. system. But
if each quark couples in this way, with P being its
individual internal momentum, then w'e have a di-
rect way to emit 8 waves for small Q. This has
been pointed out by Mitra. ' Our expression (42)
does correspond nonrelativistieally to
Qe,'o, (Q —P, v/M), where M is "a quark mass" -',

the mass of one of the states.
The Z(1915}'(8),~, has all three of its modes in

the list. The devlatlons are in opposite dlx'ectlons
and experimental uncertainties do not seem to be
large enough to account for anything like this.
[Note added in Proof: A. Barbaro-Galtieri has
pointed out to us that this pattern could result
from a single experimental number being high,
the rate I'„» for Z(1915)-AK, since the other two
partial widths are determined from data giving
their product with I „».] It is this particle that
does not fit well in our mass scheme. We suggest
that it has been misidentified by us and belongs in

the decimet '(10),&, instead of in the octet (even
though Its IIIRss Is ev811 11101'8 unsatisfactory illel'8).
The rates for all three decay modes Nm, pm, g tr

fit somewhat better [In(I', z/I', „)becomes -0.9,
-0.2, -O.V, respectively].

In calculating some of the rates of Table V,
where two pseudoscalar mesons are emitted, w' e
are faced with a serious shortcoming of our theory.
For instance, in the decay K*(892)-Km, the result
is not symmetric with respect to whether the m or
the K is replaced via PCAC by the divergence of the
axial-vector current, ~he other meson being a
state of two quarks. We therefox'e list both cases,
K*-Km and K*-mK, the last meson being the one
replaced by the axial-vector cuxrent. For the
heavier mesons q and q', the situation is even
worse. Using the K current always gives the high-
er value (by O.V in ln). When this theory is ultim-
ately made more symmetrical, the mK rates will
be reduced, Rnd possibly tile Q KK I'Rte will be
reduced somewhat also. This makes it look like
the somewhat P KK rate is another sign of this
need for another formulation. There is no numeri-
cal evidence that this difficulty extends to the bary-
ons. The mean of ln(I"„„/I',„)for K-emitting
decays (leaving out the two at +1.9 and +4.4) is
also at +0.1, just like the mean of the m-emitting
decays,

We probably also have a different symmetry
problem in a decay involving a vector meson (like
A, - vp), for we could also expect to be able to re-
place the. vector meson by a vector current. We
have not calculated these cases that way.

For the A, (10'l0) and B(1235), some measure-
ments of the ratio of the helicity +1 to helicity 0
amplitudes have been made. We get for these
ratios

A, (1)/A, (0) = O. V6, B(0)/B(1) = 0.19.

Two experiments" for theA, give 0.5 or 0.9, re-
spectively, while for the B(1235) measured values"
vary from 0.2 to 0.7.

DISCUSSION OF RESULTS

We emphasize again that we do not think we have
a theory in the ordinary sense, but something more
akin to curve fitting, in which a simple mathemati-
cal function is fitted to an empirical curve with-
out an implication that this function is an ultimate-
ly correct or even a rational "explanation" of the
shape of the curve. It is only a description, use-
ful to keep in mind as a way of remembering data
when attempting to find a more satisfactory under-
standing of that data. So, in this spirit, the equa-
tions we have introduced and the quark quantum
numbers belonging to them have been used to fit
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data.
The most striking aspect of the agreement does

imply, we think, that the quantum numbers of the
symmetrical c[uark model with internal motion (or
its analog) lead to a good representation of the
kinds of multiplets that are found. Most particu-
larly, it yields, to a good approximation, the F/D
ratios expected of these multiplets in various inter-
actions. Although it fails for several states of
J = —,', these states yield matrix elements which are
the difference of two terms, each of which varies
with mass and momentum as we go from one state
of the multiplet to another, thus explaining the
utterly erratic results if one tries to fit the over-
all matrix element by any F/D ratio at all. "

The fact that the over-all rate constants vary
correctly as we pass from multiplet to multiplet
with the same N seems to show that the "internal"-
motion quantum momentum variables and the spin
do combine like two (for mesons, one) orbital an-
gular momenta and a spin angular momentum.

We cannot conclude much from the fit as we vary
the degree of excitation N; nor, therefore, have
we tested the harmonic-oscillator character of the
wave functions with any precision. This is because
most of our results for baryons correspond to only
three values of N, N=0, 1, 2 (with only one state at
N=4), and for the mesons only to two, N=O, 1.
Further, we have an arbitrary adjustment factor
which varies a great deal as we vary N, so little
has been tested here. We cannot consider the equal
squared-mass spacing rule, for it is this rule
which prompted the harmonic-oscillator assumption
in the first place.

The reader should also remember that there are,
in addition, two well-known points which show that
a quark model of resonances is on the right track.
First, baryon resonances that cannot be formed of
three quarks, or meson resonances that cannot be
made of a single quark-antiquark pair, should not
be found. This implies that "exotic" resonances
for SU, multiplets outside the 1, 8, and 10 should
not be found. There are some suggested by data,
but the question is still being debated. Again, for
mesons it is impossible with qq to form certain
combinations of J and charge conjugation C (such
a,s 0 with C=-1 or J =0', 1,2', . . . with CP=-1),
and none of these are found.

The second point which gives evidence that the
currents are those carried by symmetrical quarks
is the &I=-,' rule for weak, nonleptonic hyperon
decays. ' Empirically, the nonleptonic strange-
ness-changing decays of the hadrons obey a simple
rule, that they are nearly purely of isospin change
—,'; whereas the theory of weak interactions, as us-
ually interpreted, expects ~I = 2 in roughly equal
measure.

The weak-interaction theory" represents the
interaction as the direct interaction of two currents,
J„~J„,where the current J& is a sum of terms, the
hadronic part being the sum of two terms, one
changing strangeness (of strength sin8) and one not
(of strength cos6, where 6 is the Cabibbo angle).
The cross term between these two is the origin of
this interaction. In the quark model, this would be
represented as

Hh~ = sin 8 cos8 (p,y„ag,)(g,y „a(4) i (56)

J~x J~ X
r&p&

i( II(

FIG. 2. Weak currents acting on q and q.

where 1 is a strange quark s, and 2, 3, and 4 are
nonstrange quarks of type u, u, and d, respectively,
and a is 1+i y, . lt is natural to suppose that (56)
acts among the three quarks in a totally symmetric
wave function, in a baryon.

But, in the approximation that all the interac-
tions take place at the same point, the form (56) is
antisymmetrical for quarks 2 and 4, so that

H&„, ———sin 8 cos 8 ((,y& a(4)(g~y„a(2)

This means that the two nonstrange quarks 2 and
4 will only interact if they are in a state antisym-
metrical in their Dirac spinors. They are sym-
metrical in space, being at the same point, so by
uirtue of the assumption that they are totally sym
metric within the baryon, they must be antisym-
metric in unitary spin if they are to enter into
weak interaction. In this case, the unitary spin is
simply the isospin and the antisymmetric isospin
state has I=O. The strange quark has zero isospin,
so the outgoing quarks (1, 3) have isospin -', . Hence,
only AI = —,

' occurs. For non-strangeness-changing
decays, we find AI=0, 1. The coupling would be a
member of an SU, octet.

In an interaction between a quark and antiquark
(such as might a.rise in the simplest model of a
meson), expression (56) can contribute to diagrams
of the two types illustrated in Fig. 2. If the rela-
tive sign of these two diagrams is positive, as
appropriate to Bose particles, the rule 4I=-,' re-
sults again.

The 4I=-2 rule is not perfect; ~I=2 does occur,
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roughly 500 times less frequently. This may re-
sult from the fact that the interaction is not quite
pointlike; perhaps it results from an intermediate
W particle of large, but not infinite, mass. It also
may be a consequence of quarks which are not com-
pletely bosons, but partially antisymmetric, for
example in different baryons.

To summarize, the AI= —', rule may be evidence
that the current-carrying spin —,

' elements of the
weak hadronic interaction obey symmetrical statis-
tics.

Lest the reader by carried away by the apparently
good fits, we remind him of the severe limitations
of the model as a possible ultimate "theory. "
There is first of all the lack of unitarity associated
with the excitations of the oscillators in timelike
directions. There is an analogous set of extra
states arising from the spins. The couplings to
pseudoscalar mesons, via the divergence of axial-
vector current, leads to results that are unsym-
metrical for such decays as K*-K+w (the result
depends upon which final mesons is replaced by
the divergence of the current). The expected elec-
tromagnetic form factor of the proton, and the
deep-inelastic electron-proton scattering as well,
are hopelessly at variance with observations.
There still are at least three 4 =-,' baryon partial
decay widths that are in severe disagreement with
experiment. Finally we must remember that the
A(1405) and the meson L = 1 multiplets do not con-
firm the assumed lack of spin-orbit coupling, and
the Z(1915) does not conform to the expected mass
regularities.

REMAINING PROBLEMS

If we continue to discuss this "model" from the
point of view of curve fittings, the wider the range
of problems to which the model may be applied
with as little arbitrariness as possible, the more
useful it is. It would be desirable to have a model
such that almost anything can be calculated; even
if it turns out to be wrong it can at least be com-
pared to any experiment. Our model is not yet
formulated so that this can be done. We can deal
with interactions with currents in first order, as
we have done, or in higher order [as (5K)K '(6K)];
but there are a number of problems whose formu-
lation is not at all obvious.

Firstly, we have no relation of the dynamics of
meson and baryon and so we cannot, for example,
show that the Regge slopes are the same for each
of them (we assumed it). Again we do not see how
to proceed, by perturbation series or what, to cal-
culate more accurate masses for the particles.
That is, the contributions to C in Eq. (1), and anal-
ogous constants for the mesons, are left outside

the ability of the model to calculate. In the same

way, no precise obvious plan is available to cal-
culate such things as the spin-orbit coupling or the
Z -A mass differences.

In the nonrelativistic quark model, which is a
model close to ours, the annihilation of the quark
and antiquark in a meson into a current (for such
processes as v-p+v or p-virtual photon- e+e )
seems straightforward and would not involve any
new arbitrary constant. In our present model, we
would guess that such an amplitude is just propor-
tional to the matrix element of the current (18)
sandwiched between the quark and the antiquark,
or

where e„ is the polarization of the p, and for the

0
(m'

~
j„"~vac) = q„—a = q„f, . (59)

The result for the II" is the same with a different
component of the current, as predicted by SU„de-
fining a corresponding f„. Experimentally,

f, =95 MeV, f» =109MeV,

g~ =160MeV, 3g =156MeV, (3/v2)g&=168MeV,

where we would expect them to be equal. If we
adopt the view that the axial-vector coupling of
the quark is renormalized, the first two numbers
are replaced by f,/Z= 136 MeV, and fr/Z= 156
MeV with Z=0 70

Why can we not determine the constant a abso-
lutely from theory, and by what theoretical view
do we justify the form (57) in our model?"'
This question is important also because if a could
be theoretically deduced, then using the Gold.-
berger-Treiman relation we could have a predic-
tion of the absolute size of f„, the coupling con-
stant of mesons to hadrons. It is tantalizing that
such a process has a definite absolute rate in the
nonrelativistic model (but it gives an a which is
not constant but varies inversely with the mass of
the state, a feature completely at variance with
experiment).

Again, in the nonrelativistic model, such things
as the electromagnetic self-energy differences
p-n —Z'+Z, Z'+Z -2Z', or m' —m could be cal-

(i ~ jJvac) =ae, J Tr[h;(p„p, )(p,y„e""~ y„e"-&p,)]

' d'(P. —P,)/(»)', (57)

where h; is the eigenfunction of the operator X for
the meson in question of four-momentum q= p, +p„
and mass m (q' =m'), and a is a constant. We find

0
(p ~j„"~vac) = e„—m a=e&g m (58)
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culated since they depend only on the electrical
interaction between quarks. The latter can be com-
puted from the wave function, and thus absolute
values can be computed. In our model it is not
obvious how to do this. Our prescription would be
via the second-order scattering theory, ' take one
vector interaction of momentum q, the other of
momentum -q, multiply by 4ve'/q', and integrate
over d'q/(2m)'. lt is rather complicated, and one
does not have the feeling it is surely right. We
have not carried it out.

There is another problem showing inadequacies
in the formulation of the theory of our model. At

high energy, total cross sections approach their
asymptotic values as const+Ps", with n(t=0)
about -0.5 or so for the p and A2 trajectories.
This agrees with mass formulas, of course, but
the coefficients P for the various kinds of mesons
and nucleons obey some very simple relationships
closely related to those expected in a picture using
quarks Can. we calculate the P(t) expected in our
model?

We can do so by summing the terms correspond-
ing to exchange of the sequence of mesons belong-
ing to the trajectory (increasing the values of L
and J together). (For the case of baryon reso-
nances, the sequence is that formed by adding
successively two units of angular momentum in the
combination a*a*+&"b*.) But we cannot calculate
the exchange of any meson except for the lowest
S states. This is because we have not specified
how to calculate a hadron-hadron-meson vertex
for an arbitrary meson —only for the pseudoscalar
and vector mesons have we stated what to do (re-
place by currents).

An obvious choice for this interaction is illus-
trated in Fig. 3 for the case of three mesons.
Here, lines are drawn indicating the direction of
the quark and the antiquark in each meson. The
coupling, disregarding spin and unitary spin for a
moment, would be written

P

FIG. 3. Quark momenta in the three-meson vertex.

where h, are the wave functions for each meson.
Of course, the center-of-mass motion can be ex-
tracted out, obtaining the conservation of over-all
momentum (p, +p, +p, =0), and leaving only two
internal-variable integrations. To include unitary
spin, each 5,. is thought of as a 3&& 3 matrix in uni-
tary spin, with the entering index for the quark,
and the second index for the antiquark. The same
would hold for the Dirac spinor indices; the anti-
quark would carry an adjoint spinor index. Thus
the h,.'s are matrices; for the diagram shown they
are to be multiplied and the trace taken.

This does make the couplings very ~uch like the
current couplings we have used, but not quite in
one essential way. If it is assumed, as we have,
that the spinors of h, are in the direction of its
proper motion P, then what obtains for pseudo-
scalar mesons is an expression close to Eq. (42)
but with the term P missing. Such a coupling fits
the —,

' states still more poorly. One possibility is
to complicate (60) by inserting in each junction the
operator P„where p,„ is the quark momentum.
Thus (60) would become

c@l +c&+b b~3 b~+a a~2 a~+c

&& d +~d +bd +c ~ (61)

Such an expression is complicated and ad hoc and

we have not yet made any investigation of it. We
are looking for theoretical arguments to limit our
choices. The extension to baryon-baryon-meson
presents no new problem.

The development of such expressions as (60) or
(61) to give a form for the arbitrary meson coupl-
ing that would agree with experiment, would not
only permit extending our theory to Regge coupl-
ings P(t), but would solve a number of our present
problems as well, of course. For example, it
would be symmetrical in the mesons. In addition,
it would permit us to analyze a current coupling
via an intermediate meson and thus to have hopes
of producing a more realistic electromagnetic form
factor for the proton. Again, the Goldberger- Trei-
man relation may emerge as a consequence of a
dynamical model, instead of being put in from the
beginning. Finally, the interaction of the quark
and antiquark in a meson branch might in some
natural way be related dynamically to the inter-
action they have within the baryon, so some under-
standing of the equality of Regge slopes for mesons
and baryons might be contained in the model.

A word about the relevance of our work to work
following the Veneziano line" is in order. There
the meson, for example, has not one internal oscil--
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lator of frequency Q, but a whole sequence of modes
of frequency Q, 2Q, etc. The actual low states that
we have studied will be almost the same, however,
since the first levels above ground, at energy Q,
can come only from the excitation of the one oscil-
lator mode of frequency Q. This includes all the
meson states we studied, and very many of the bar-
yon states. The next level at 2Q, in baryons, can
be made of two oscillations of the first mode, as
we assumed. But there is a new additional 70 of
negative parity from the first excitation of the sec-
ond mode (at 2Q). Thus all the states of even parity
near 2Q have been correctly assigned —only a very
few states of high energy may get a new assign-
ment, so that virtually all of our work is relevant
to the question of the numerical agreement of the-
ories of this type to experiment.

The quark model in another form has proved use-
ful in understanding certain aspects of high-energy
collisions" (other than Regge behavior). It is not
yet clear how our low-energy model should be used
at high energy in a consistent way, but it is an in-
dication that a quark picture may ultimately per-
vade the entire field of hadron physics.

About the paradoxes of the quark model we have
nothing to add, except perhaps to make these par-
adoxes more poignant by exhibiting the mysteri-
ously good fit of such a peculiar model. Can we
avoid complications like parastatistics, with its
implication that there are three kinds of each
quark, and that b,"is composed of three u quarks,
one of each kind? But, if quarks are identical
bosons, how could baryons be fermions? If they
are only bosons inside the baryon, what happens
if they come apart —must they not be purely fer-
mions as the spin-and-statistics theorem suggests?
Or is that theorem based on the assumption that
quarks can appear singly? Perhaps they cannot be
separated because the harmonic-oscillator poten-
tial rises as they get farther apart —or better,
perhaps the harmonic-oscillator potential is an
artifact (like the magnetic exchange force in iron)
reflecting in a crude way the proposition that indi-
vidual quarks cannot be separated because of their
statistic s.

objects, form states of four kinds of symmetry
which we call S, n, P, A, symmetric (S), mixed-
symmetric (n, P), and antisymmetric (A),

1
Is& = Ixyz& =~6(lxyz&+ Ixzy&+ ly«&

+ Iyzx&+ Izxy&+ lzyx&),

In& = Ixyz&„=
2 ( Ixyz& + lxzy& + lyxz&

j.

+ Iyzx) —2 Izxy& —2 Izyx)),

Ip&
= lxyz&s = s(lxyz& —lxzy&+ ly«& —lyzx&),

(Al)

11),l». =
I &„

ll&sl2&s =1&s,

11&~12&s =1&~, l»~12&. =1&s,

-11).1»s =
I &. ,

—(+11)„12)„+1»s 12&@)= I )s,
1

~2(-II&.12& + ll&s 12&s) =
I &. ,

1
~(+I».12&, + I», I».) =

I &„
1
~2(-11&.12&s + 11&s I».) = 1&~

(A2)

2. Dependence on Spin

I» = lxyz&, =—;(-lxyz&+l«y& -lyzx&
V6

+ Iyxz) —Izxy) + Izyx) ),
where lzxy) means that the first object is in state
z, the second in x, and the third in y. If, say, x,
and y are the same state y =x, we must replace
lxyz) + lyxz) by v2 lxxz). If x, y, z are all the same,
only the S state survives as lxxx)s = lxxx). The
state e has been chosen to be symmetric in the
last two quarks, the state P is antisymmetric. If
we combine two states of these kinds, say 11), and
12), we may recompose states of varying symmetry
by the following rules:

APPENDIX: THE WAVE FUNCTIONS
OF THE BARYON STATES

%'e shall discuss the calculations for baryons;
those for mesons are similar but simpler.

If we combine spins so that x, y, ands must
either be + —', or ——,

' (written simply +, -), we find
that 1)s is spin —', . 1)~s are spin —,

' and 1)„=0. We
have four states of spin &,

1. The Wave-Function Symmetries

of Three Objects

If an object can be in one of a number of condi-
tions x, y, z, . . .we can, when we have three such

+2 S +++S ~

ls .+ &s= I++ )s

2p 2S + Sy

2 2$ gs

(A3')
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and two a states of spin —,',

Il, +l&.=+I++-&.,
(A3")

(A7)

and the corresponding P states,

Iz~ + a&8 =+I++ &8 ~

12, --.
&8

= -I- -+&8.
(A3 /II}

3. Dependence on Unitary Spin

If the objects can have three values for unitary
spin, we have several possibilities. I &z is a
decimet ILO&s' n and P are octets~ 18&u and I8&si

and I )„is a singlet, Il)„. The wave functions for
these are evident. For example, the quantum num-
bers for a Zo require it to be made of an s, u, d
quark. Therefore Z' in a state I8&„ is Is, u, d&„, in
a decimet it is Is, u, d&~, where we mean to sub-
stitute into (Al) s, u, d for x, y, z, respectively.
A neutron is d, d,u, so if it is in an octet it is
Id, d, &&„8, if it is in a decimet it is Id, d, &&s and
is called as', ete.

Combining these two (spin and unitary spin) by
our multiplication table (A2), we can make the fol-
lowing 56 symmetrical states I56&~ Iwe use
"quartet" and "doublet" symbols '( ) and '( ) to
represent total spin —,

' and —,
' states; there is no

lspin&~1:

I56&,: '(lo) = I-,'&,
I lo&„

(A4)
'(8) =~2(I~2&nl8&. + I2)8 I8&8);

4. Dependence on Space

Next we must work out the orbital states and sim-
ply combine them with these SU, states to produce
purely over-all symmetrical states, for we assume
the baryon resonances are pure I &~ states only.

N=O. The ground state, h„ is symmetric. We
call it Ig& . Therefore, it combines only with I56&~

to make a totally symmetrical state,

(AB)

yielding '(10)„,for the spin--,' decimet and '(8)»,
for the spin- —,

' octet.
X= 1. The states are a*Ig& 'or b*Ig&. The first is

an n state, the second a P state
For each case, choosing a* spacelike, we have

three states forming the components of an I.= 1
state. If we select those components as having a
z component +1,0, -1, we have for these orbital
states

Il +1&.'=~*, lz&,

Il - ».'=~*lg&,

where a*, =w(a*„aiba*,)/W2, and the superscript 1 in
the state system is to clarify that it is an orbit
state of X=1. Corresponding Il)8 states are gen-
erated by b*, Symmetric states are now formed
by combining

the following 70 states of type n.'

I7o&„: '(8).= Il&. 18&. ,
I», » =—2(l»&. I».'+ l»&8 l»s) (Alo)

'(8).=~~(-I2&.I8&. + Ia&8 l»s),

and 70 of type P:

I70&8: '(8)8 = I-'& I8&8

'{lo),= I-,'&, Ilo&„

'(l)s =
14& 11&~'

and the foQowing 20 antisymmetrie states:

(A5)

Each state, say the '(8), being obtained by substi-
tuting the expression for that state in (A5) for
I70)„, and in (A6) for I70)8.

Which components of angular momentum, of spin,
and of orbit are to be combined in (A10)'? That
depends on which total orbital angular momentum
you wish to work out. Thus, for the N(1700) (8)„,
we must combine the S = —,

' in the expressions (A5)
or (A6) for '(8) to the I =1 of the orbit states in

(A10), to compound a suitable (say, + —,') compo-
nent of total spin J = —„using a linear combination
with the correct Clebsch-Gordan coefficients for
these values of angular momentum. In this way the
wave functions for all of the I70, 1) states of vari-
ous J are worked out (they are all of negative par-
ity, because of the a*).

@=2. Here we can have two exeitations of orbi-
tal motion and thus we can combine them, using
the rules (A2) to make up space states of various
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symmetry. The parity is now positive.

&=2: I2&,', l0&~ =—2(l».'I».'+ l»8l»a),

I2&:, I0&: =—,(-11).'I».'+ l»81»8),

l2&g, I0&a =—2(l».'l»g+ l»a I».'&,
(A11)

Il) =—2(-ll).'ll)'+ I»'fl).')

12, o& =—8(l+1&f-l&+I-1&I+I&+2Io)lo&),

I2, 0&a =—8(l+I&.'I-»e+ I-l&.'I+»a + 2I0&.'10&a)

(+pbbs + sgbw + 2swb8) lg)
1

I2, 0&,
' =—,(I+I&„'I-I&„'+&2 10&„'lo&„'

+ I+1)8 I-I&a'+ v 2 I0&a'I0&8)

=—(a*,a*+a,*a,* + b*,b*+b,*b,*)lg) .1

Here again, we shall have to use Clebsch-Gordan
coefficients to make an I.=2 or 0 or 1 out of our
two I.=1 pieces. For example, since

functions are properly totally symmetrical, we

have to take only the first term, acting on the first
quark, a, and multiply by 3. Then each matrix X~

[Eq. (35), or Eq. (38)] andK~[Eq. (42)] is a sum of
simple terms, each term of the sum being the pro-
duct of an operator on the unitary spin, e,', of one
on the ordinary spin (1 or o), and of one on the
orbital excitation of the variable $(a, a*). Because
the operator does not act on the second quark oscil-
lator, the operator 5* is not involved in these ma-
trix elements and it always remains in its ground
state. Furthermore, o. and P states do not mix.

Since the matrix is a product of operators on
unitary spin, on ordinary spin, and on orbital mo-
tion, and the wave functions have been explicitly
written as sums of products of factors for unitary
spin, spin, and orbital motion, the procedure for
finding matrix elements is straightforward.

%'e start with the unitary-spin dependence, where
the operator is simply e„ the charge on the first
quark (for photoelectric elements). If e„, e„and
e, are the charges carried by the nonstrange
quarks of isospin +-,' and -~ and by the strange
quark, respectively (so that e„=+-'„e,= --'„e,= --,'
for photon coupling), then the action of e, is sim-
ple. For example, e, luud& =e„luud), e, lduu)
=e~lduu&, etc. We find immediately, for the SU,
states of various symmetry [in each case for the
state having the quantum numbers of the proton
(e.g. , p for octet, A' for decimet)],

We take IO&' IO)„' to mean the double excitation of
a,* or g,*a,*lg), but it is normalized, so it is

whereas

10&.'I0&,'= .*b.*lg&.

These new states must now be combined with the
unitary states (A4) to (AV) to form, finally, sym-
metrized states, and the correct Clebsch-Gordan
coefficients used to combine substates of various
z components of angular momentum together to
form states of definite J' and 7,.

We need not discuss the higher states, as the
principles are always the same. The meson states
are self-evident. Having the states, we must now
turn to computing the matrix elements of various
operator s.

5. Evaloation of One-Particle
Matrix Elements

The operators, such as j» in (18) or i q„j„"in
(20), that we shall need here are sums of terms
each operating on only one quark. Since the wave

&I&. l .I(10),&=l~2( „- „),

&(8).Ie.l(8).) = 3(e.+2s&&,

&(8), le, l(8),& =,„,

&(8), fe.l(»),&
= 0,

«8&.l..l(8),) =o.

(A12)

For the neutron, replace e„by e~ and e~ by e„.
For meson couplings in general, we should like

to have e,' replaced by a matrix, but it is very easy
if we are coupli. ng a neutral meson, say a go. Then,
since w =(uu —dd)/v2, we obtain the correct result
by substituting e„=+1, e„=-1 into (A12). Again,
for qo coupling, since vP=(uu+dd —2ss)/v6, sub-
stitute e„=l/v3, e~= 1/&3, e, = -2/v 3 to get from
(A12) the coupling of the q' to the proton. From
these two cases, all the rest can be immediately
obtained by using the standard Clebsch-Gordan
(F,D) coefficients for SUS. Thus, since in octets
the proton-m coupling is I" +D and the proton-g'
coupling is v 3(E —',D), we can fin-d (E,D) in the oc-
tet cases immediately'.
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&(8) le.'l(8).&
=(-'., —l),

&(s), le. l(s),&
=(-,', —,') .

(A18)

Transition SU3 matrix element Weight 8

TABLE VII. SU3 matrix elements
for decimet-octet transitions.

&(8)~ Iff'l(1)„A& = 0,

&(8)aP IK'l(1) „A& =-1/v 3 .
(A14)

The factor for spin is the operator 1 or ~„0,,
o on the first quark. The matrix elements can be
worked out directly from the states. We find the
following matrix elements for the operators 1, and

o, on the states of z component +-,':

For the decimet it is only necessary to give one
coupling, say proton-v', which in (A12) is —', v2,
since SU, determines all the other couplings. In
Table VII we give a number of cases and the multi-
plicity R (explained in the text) that each matrix
element squared must be multiplied by to get the
total rate. Finally, for the singlet (1)„, we give
the matrix element from the singlet A state to a
state of proton quantum numbers via a coupling
with a K' meson,

—ZPK'

N y
z'- z'~p

—z'qp

—wp~+

Z'- Z+K

fH gp

ApK

1
2

1
2

1~3
1 ~3

1
2

2

2

—', vP

—'v

2

3
2

3
2

a table immediately extended to the other operators
o+, and o and to other components of z spin„di-
rectly or via, the Wigner-Eckart theorem.

Combining the spin and unitary spin, we list here
in Table VIII the results for the product e, and e,o
between the various states of the SU, multiplets
and a proton state of the fundamental octet, for the
z component equal to +—,'. For cases with an octet,
we give the matrix in the form of a coefficient
times a parenthesis containing two numbers which
are the values of E a,nd D in the form (E,D) Thus, .

if a m' emission is w'anted from excited proton to
proton, the expression (E,D) is replaced by

(E+D), etc. For photons, replace (E,D) by E
+ 3D for protons and by --',D for neutrons. In the
case of decimets, the number given is directly the
4' to m and proton amplitude. To get other eases
multiply by the matrix elements in Table VII. For
the singlet, the number is the amplitude for A to
K and proton. States I708& and I20„) all have zero
matrix elements.

It is also a simple matter to work out the matri-
ces for the orbital motion. The operators here are

&gl(l, a„a„a )e ""In&.

We find Table IX using the wave functions previ-
ously described. (All p states like p, N=2; I2&a,

IO&a give zero. ) We finally combine all these to
obtain the final matrix element. We illustrate this
with a typical case. Suppose we wish to obtain the
transition with v' emission from the N(1100),

TABLE VIII. Matrix elements from octet proton with S, =+2. The numbers in parentheses are (F,D) values.

Multiplet M

(8) 56

4(10) 56

2(1) 70 ~

(8) 70 A

(8) 70 Q

2(10) 70~

&M. +hie, lP, +k&

+ —'(+1, 0)

+-'v 3

+ 1 (+ 1 1)

&M, +2le.~, IP, +2&

—'WB(—' 1)6

&M, + 2le~o~l P, + e&

+ 1 (+ 2 1)
3 39

+-', v2

+ —,
' &3

+1(+5 1)

+-(—1)1 1
3 3'
2

&M, ——,'le, e.,-l P, +-,'&

1(+ 2 ])
+ -2&2

9

+-,' Ws

1(+ 5 ])
+ —(——1)1 1

6

27
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TABLE IX. Matrix elements of apace states.

State M

0L=0s
N=l I =1~

%=2 I =2

N =2 L =2~

%=2 L, =0~

%=2 I =0~

(rlilM, o)

+ -'W6 X'
-6

6

6

+ —,
' W3 X'

&el~+I~, +1)

(
i )i/2 g

+{i}«2X
2

(gl&,IM, o)

(2 )i/2 p

+ (2)i/2y

+(i)i/2g

+ (i )i/2 y
2

which we identify as belonging to '(8)„, [70, 1 ],
going to a proton with J,=+—,'. The [70, 1] is
(1/~2) l70„, lg+(1jv2) l708, 1))&, but the p pieces
give zero matrix elements, so we have an over-
all D times the normal Clebsch-Gordan coeffi-
cients, to produce the correct angular momentum,

('6„,[70, 1 ], +-,'lm~lp&

=(—')~p (—')U2(p6 yp ~ 1 —1 lpJt+lp&

—(l)"'(-')"'&'6, +-.';1., Olsf "lp&

+(2)"'(~p)"'&'6 —2'1, + 1 1st Ip& .

Taking only the pieces of St [Eq. (42)] which give
nonzero matrix elements, this becomes (omit the
factor 6E)

- (-.')"'r&'6, + 2 lo. lp&(1., o ll lg&

+(~)"'(-&2p)('6, —l l~ lp)&1., + 1 lu; lg&.

Taking the appropriate numbers for these partial
matrix elements from Tables VHI and IX, and not-
ing that (E, D) is (-p, 1), we find E+D= p (for the
))' -coupling case) times

-', (+&2 p)( —x ) —(i)"'(p- yap)(+-', ) x )
6

—(;)"'y(+-', )(-~) + (~)"'(-W2 p)(+~) x 1

[Xy(1+6) -SP].
1

2 6

Multiplying the above by —', x 6I', this amplitude will
be found under S»(1700)- ¹ in Table ll where the
results of all similar calculations for the emission
of pseudoscalar mesons are given. For a very few
states, the final state is in the decimet instead of
the proton. Obvious modifications are made, and
new matrix elements supplement Tables VII and
VIII in this case.
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