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1 Introduction

The 7Be+p scattering system has regained attention by the fact that a large
fraction in the uncertainty of the 7Be(p,γ)8B S-factor at low energies comes
from uncertainties in theoretical extrapolation. In particular, P. Descouvement
[1] predicts that the 3S1(−) wave in the elastic scattering has a positive phaseshift
below 2 MeV from calculations by a cluster model, while potential models result
in a negative phaseshift. The cluster model reproduces very well the energy
dependence of the latest direct measurement of 7Be(p,γ)8B [2], while potential
models do not. A measurement of the elastic 7Be+p reaction has been reported
in Ref. [3], however, the measurement is at too low energies and not of high
enough precision to draw conclusions about the sign of the s-wave phaseshift.

The 7Li+p reaction is an interesting case for testing experimental set-ups to
do a high precision 7Be+p experiment. It also allows develop analysis programs
to obtain realistic phaseshifts as phaseshifts are not trivially derived from dif-
ferential cross sections obtained in a measurement. We will discuss phaseshifts
in the A=7+p system first. As we have obtained 7Li+p elastic scattering data
from a previous measurement, we will then discuss a phaseshift analysis of this
measurement. At last we will see what difference in differential cross section
(the observable) the predictions of Ref. [1] do actually produce.

2 Phaseshifts in the s=1 and s=2 mixed system

7Li and 7Be have a ground state spin of Jπ=3/2−, while the proton has a spin
of Jπ=1/2+. Thus the channel spin is s=1 or 2, with negative parity states
connected to the s-wave. R. G. Seyler [4] has treated the 7Li+p system and
given a general description how to proceed with a phaseshift analysis.

If we restrict ourselves to s-, p-, and d-waves, we find 16 scattering states
(2s+1�J):
for s=1: 3S1, 3P0, 3P1, 3P2, 3D1, 3D2, 3D3 ;
for s=2: 5S2, 5P1, 5P2, 5P3, 5D0, 5D1, 5D2, 5D3, 5D4

while the the parity of these states goes with π = (−)�+1. States with identical
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Jπ are mixed, i.e. between S and D states and within the P states, resulting in
9 mixing parameters. Jπ therefore runs from 0+ to 4− (see table 1). L. Brown
et al. [6] present a parameterization of the collision matrix W in terms of the
phases and mixing parameters ordered by possible resonances with a given Jπ.
For � ≤2 some of the states can be populated by up to three combinations of s
and � what is referred to in L. Brown et al. as channel. Then the nuclear part
of the collision matrix is

WJπ

c(m)c(n) =
3∑

p=1

uJπ

pmuJπ

pne2iδJπ

c(p) (1)

with the face shifts δc(p) that are in general complex; c(p) are order parameters
as listed in table 1.

The coefficients uJπ

pc are given in term of the mixing parameters εJπ

, ζJπ

,
and ηJπ

by

u11 = cos η cos ζ (2)
u12 = sin η cos ζ

u13 = sin ζ

u21 = − cos ε sin η − sin ε sin ζ cos η

u22 = cos ε cosη − sin ε sin ζ sin η

u23 = sin ε cos ζ

u31 = sin ε sin η − cos ε sin ζ cos η

u32 = − sin ε cos η − cos ε sin ζ sin η

u33 = cos ε cos ζ

Nota bene that the first index for the coefficients upc refers to the summation
index in Eq. 1 and the second index to the order index c in Table 1. We
therefore get the combination of spins, channel spins, angular momenta and
mixing parameters shown in table 1, which can be used as free parameters to fit
the desired angular distributions. ε is a measure of channel spin mixing without
� mixing, ζ is a measure of � mixing without s mixing, and η a measure of
mixing between partial waves of different � and s.

In equation 1, when there are only two elastic channel for any Jπ (table 1),
the p=1 index in the sum should be dropped and η=ζ=0, c=2,3; for the one
channel case U = e2iδJπ

s� , i.e. for the stretched states in table 1. Then is, e.g.
(c(m)=1,c(n)=1) for the 1− and the 2− states

W10,10 = u11u11 exp 2iδ10 + u21u21 exp 2iδ22 + u31u31 exp 2iδ12 (3)

and (c(m)=1,c(n)=2)

W10,22 = u11u12 exp 2iδ10 + u21u22 exp 2iδ22 + u31u32 exp 2iδ12 (4)
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Jπ c=(s�) Parameters δJπ

s�

0− (22) δ0−
22

0+ (11) δ0+

11

1− 1 (10) δ1−
10 δ1−

22 δ1−
12 ε1

−
ζ1−

η1−

2 (22) ”
3 (12) ”

1+ 2 (11) δ1+

11 δ1+

21 ε1
+

3 (21) ”
2− 1 (20) δ2−

20 δ2−
12 δ2−

22 ε2
−
ζ2−

η2−

2 (12) ”
3 (22) ”

2+ 2 (11) δ2+

11 δ2+

21 ε2
+

3 (21) ”
3− 2 (22) δ3−

22 δ3−
12 ε3

−

3 (12) ”
3+ (21) δ3+

21

4− (22) δ4−
22

Table 1: Combination of spins, channel spins, angular momenta and mixing
parameters for � ≤2 in 7Be+p.(” same as above.)
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etc..
The nuclear part of the collision matrix relates to the transition matrix M

whose elements are given as follows:

Mα′s′ν′,αsν(θα′) =
√

π

kα
[−Cα′(θα′)δss′,νν′ (5)

+i
∑

j��′
(2� + 1)1/2(s�ν0|jν)(s′�′ν′ν − ν′|jν)

ei(ω�+ω�′)(δss′,ll′ −Wj
s′�′s�)Y

ν−ν′
�′ (θα′ , 0)]

with ( |) being Clepsch-Gordan coefficients and Y ν−ν′
�′ (θα′ , 0) the spherical har-

monics. ν and ν′ represent possible magnetic substates of the channel spins s.
Note that since Y00= 1√

4π
s-wave partial waves do not have a distinct angular

distribution, but rather decrease or increase the cross section uniformly. Wj
s′�′s�

represents the nuclear part of the collision matrix. Cα′(θα′) is the Coulomb
amplitude.

Parity conservation forces

M−ν′s′,−νs = (−)s′−s+ν′−νMν′s′,νs (6)

reducing the number of elements of the matrix M to half.
The transition matrix relates then in the usual manner to the differential

cross section:

dσαs,α′s′ = (2s + 1)−1
∑

νν′
|Mαsν,α′s′ν′(Ωα′)|2dΩα′ (7)

All together, as the phaseshifts are complex, we have 41 real parameters
to describe elastic scattering of the 7A+p system, when s, p, and d waves are
included. The imaginary parts of the phaseshift describe inelastic processes,
but do not separate individual channels. However, as we will restrict the use of
partial waves involved for practical reasons, individual inelastic channels will be
associated with one particular partial wave.

3 Fits to the Warters data

3.1 Discussion of the data

In 1953 W.D. Waters et al. [5] published 7Li+p elastic scattering data containing
absolute cross sections, the only absolute cross sections for this reaction ever
published to our knowledge. The data range from 359 keV to 1395 keV in the
laboratory system and from 50◦ to 160◦, i.e. stay below the (p,n) threshold.
There are higher energy data available, normalized to Warters et al., but at this
stage we have not included them in the fit.
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In the Phys. Rev. publication of Warters et al. a note added in proof
stated that these data have to be renormalized due to new stopping power
measurements by 5% down. A private communication to the authors of Ref. [6]
stated in addition that another lowering of the data by 4% was necessary. Both
corrections are the result of improved stopping powers at the time. Using the
quoted stopping power for the first correction, by today’s best tables another
5% lowering would be adequate. However, we find that the 9% correction of
Ref. [6] produces the most reasonable results, and we will quote those here.
Ref. [5] do not give errors to their data, but claim an all over error of 5%. As
we assume that statistics is of minor importance we assign this error to all data
points, though somewhat larger errors may have been more adequate. Note that
in Ref. [3] the 7Be+p data are described as being normalized to those of Ref.
[5], without mentioning what normalization has been used.

W.D. Warters gives excitation functions for seven angles, not always taken at
the same energies. As the phaseshifts and mixing angles depend on energy, but
not on angle, we have made interpolations to keep obtain angular distributions
for a given energy, similar to Ref. [6]. Fig. 1 shows such an angular distribution.
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Figure 1: Angular distribution from Ref. [5](1395 keV) and fit to the data.
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3.2 Individual fits

Using the formalism described in Section 2 fits to the individual angular distri-
butions can be obtained. However, per energy point there are only 7 angles to
be fitted by many more parameters. Even if free parameters are used sparingly,
this results in very good fits to individual distributions, but very inconsistent
phaseshifts, i.e. phaseshifts can fluctuate between close by energy points more
than reasonable physics expectations would allow. Fig. 2 shows phaseshifts
derived under the conditions discussed below.
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Figure 2: Real and imaginary parts of the 1− and 2− s waves in a free fit with
40 parameters. The 5P1 wave has been fixed according to literature values for
the 1+ resonances.

Keeping neighbouring energy points uncorrelated, even the 1+ resonance
structure in the excitation function does not show up clearly, but manifests
itself as strong p-wave fluctuations in the resonance energy region. Therefore,
as a first step, the real part of the 5P1 (abbreviated here 1p21 [1+, s=2, �=1])
wave was parametrized in terms of elastic scattering expressions from the R-
matrix as

δ1p21 = −φ1p21 + ω1p21 + arctan
R1p21P1p21

1 − R1p21(S1p21 + B1p21)
. (8)
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with φ being the hardsphere phaseshift, ω the Coulomb phaseshift and

R =
γ2

E − Er
(9)

the R-function, while S, P , and B are shift functions, penetrability, and bound-
ary conditions in the usual R-matrix ways. This procedure ignores the multi-
channel character of the problem, i.e. mixed terms between inelastic and elastic
channels. However, in this energy region such cross terms are likely irrelevant.
In principle, more complex expressions can be implemented at a later stage. The
boundary condition was set at Eb=386 keV, i.e. on the first narrow resonance,
resonance energies and widths have been approximately matched to literature.

The s-wave phaseshifts shown in Fig. 2 have in the local fit the 5P1 wave
fixed in this global way, yet they still show strong fluctuations in the narrow
resonance region at 386 keV and some correlation to the p-wave at about 0.95
MeV where a broad resonance is observed.

3.3 Global fits

It is obvious from multiple fit exercises that the individual phaseshifts need
to be described by a few global parameters allowing for fits over the entire
energy range of the data. While the structure of the 1+21 phaseshift, showing
obvious resonances, can be reasonably described by R matrix theory, this is not
so clear with the other phaseshifts. In principle, a full R-matrix multichannel
description will likely succeed in getting reasonable fits to the data. However, it
would not be clear what the thus derived phaseshifts, which would be a mixture
of hard sphere phaseshifts and far distant background and/or real states, would
accomplish or if a model dependence would be introduced. As we wish to derive
the phaseshifts rather straightforwardly from the data to compare to model
predictions, we have chosen to describe them by polynomials of up to third
order, except for the aforementioned p-wave where both the elastic and the
inelastic part corresponding the (p,p’) scattering into the first excited state of
7Li at 478 keV is modeled according to simple R-matrix expressions. As we
do not wish to employ all partial waves, in particular those of high angular
momentum or high spin, we only use the following partial waves (we find the
dependence from mixing parameters extremely week):

• 1+21 (5P1): The resonant p-wave, two known resonances are in the energy
range and a background state is also used. The inelastic (p,p’) scatter-
ing, as observed for the upper state is included as a p wave decay in the
imaginary part.

• 1−10 (3S1): The real part of the phaseshift is described by a third order
polynomial without a zero order term so that for zero energy the phaseshift
is zero. The imaginary part, corresponding to (p,p’) is described by a
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second order polynomial multiplied by the s-wave p’ penetrability so that
there is no cross section below threshold.

• 2−20 (5S2): The real part is as for the 1−10 (3S1) case. No imaginary
part has been included.

• 1+11 (3P1): The real part is described by a second order polynomial.

• 2−22 (5D2): The real part is described by a third order polynomial with
no zero order. This term is the only d-wave included.

• 0+11 (3P0): The imaginary part is described by a second order polynomial.
It corresponds to the (p,α) reaction that for symmetry reasons can only
proceed via 0+, 2+, 4+ etc. T=0 states in 8Be. No real part has been
included.

• 3+21 (5P3): The real part is represented by a second order polynomial.
It has been included as there is a very strong 3+ resonance just above the
neutron threshold.

After optimization the partial waves as displayed in Figs. 3, 4, 5 were found.
Fig. 4 also contains the least squares χ2 for individual angular distributions.
The real parts of the s-waves show a rather flat, but relatively high positive
value. This is largely enforced by the behaviour in the region between the
two 1+ resonances. The imaginary part may be influenced by the upper 1+

resonance which would be unphysical. The real part of the 1p21 wave have
been described by resonances as discussed above. These two 1+ states are well
known in literature. Letting the R-matrix parameters float reproduced well
the literature values. The imaginary part, corresponding to (p,p’) also follows
resonance behaviour. Again, the inelastic (p,p’) transition is well known for
the upper resonance, but is also known to have a non resonant part which we
included in the s-wave. For the d-wave only the 2m22 wave has been used in
the fit and is displayed in Fig. 5. There may be some (anti-)correlation with
the 1− wave. the relative high value for low energies may also compensate for
experimental effects.

Fig. 4 also shows the least squares distribution for individual energy points.
Regions of bad fit are around the narrow low energy resonance (actually a few
points in the centre of the resonance have been taken out), and in the region
from approximately 0.5 to 0.8 MeV, i.e. between the two 1+ resonances. The
high energy region, in contrast, shows reasonable fits.

The first case of the narrow resonance is most likely experimental. As the
target has a finite thickness it will integrate over a rapidly changing angular
distribution. Our calculations do not include such an integration as experimen-
tal information is sparse and an integration would take considerable computing
time. As this case of a bad fir is understood, the necessary effort to include
target thickness integration is not justified.
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Figure 3: Real parts of the 1− (red) and 2− (green) s waves in degree in a
global fit as described in the text versus cm energy. The imaginary part of the
1− swave is indicated in blue, while no imaginary part has been included for
the 2− wave. The lowest energy point has been set to a phase of zero.

The case of the inter-resonant region is less understood. In fact, Ref. [6]
do not fit this region. We will see that this region would require a more so-
phisticated s-wave for a better description, while other waves are of no help.
Inspecting angular distributions as derived shows that the deviations from a
good fit are indeed systematic and not at random.

3.4 The least squares dependence of the 1m10 s-wave

We test now, how much a variation of one (1m10) of the two s-waves can be
compensated for by the other waves, in particular the other (2m20) s-wave. It
has been suggested in Ref. [6] that the 1m10 s wave should be of negative value.
As for the best fit, as it is described by a polynomial with three coefficients, we
apply a scaling factor to this polynomial to eventually reach negative phases.
Thus we leave the shape of the 1m10 s-wave undistorted. The result is shown
in Fig. 6. Obviously, the fit optimization with the rest of the global parameters
being free finds no valid parameter to compensate for a change in the 1m10
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Figure 4: Real parts of the 1+, s=1 (red) (1p11) and 1∗ s=2 (green) (1p21) s
waves in degrees in a global fit as described in the text versus cm energy. The
imaginary part of the 1+s=2 wave is indicated in yellow, also being resonant. All
other waves included in the p-wave fit show gentle slope towards higher energies.
The lowest energy point has been set to a phase of zero. Purple crosses indicate
the individual χ2 per energy point (no dimension).

wave. We present the result for the p-wave, including χ2, and a scaling of -1
in Fig. 7. Obviously, the shape of the p-wave (and s-) wave remain largely
unchanged. The least squares parameter χ2 increases drastically in the 0.4 to
0.8 MeV region, while very high and very low energies remain reasonably fit.
As an additional test, using the best parameters for the fit with the -1 scaling
factor as a starting point, we let the 1m10 wave go free. Then the 1m10 wave
went back into positive territory, albeit with a somewhat different (and worse)
solution.

It is therefore concluded that the two s-waves are very well separable in the
phaseshift fits to the data. However, the s-waves are particularly sensitive to
the correct determination of the cross section.
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Figure 5: Real parts of the 2− s=2, �=2 (2m22) (brown) d waves in degrees in a
global fit as described in the text versus the cm energy. All other d-waves have
been set to zero. The lowest energy point has been set to a phase of zero.

4 Predicted cross sections for 7Be+p elastic scat-

tering

From the predicted phaseshifts of Ref. [1] for the two s-waves cross sections can
be deduced rather straightforwardly. However, the information of Ref. [1] is
not complete as p-wave and d wave elastic contributions as well as all inelastic
ones are not predicted. The known 1+ and 3+ resonances can be treated by an
R-matrix approach as above, using literature values for energy and width. Since
the inelastic (p,p’) channel to the 418 keV first excited state in 7Be is open, it
has been included with an arbitrary width in both resonances. Other p and d
waves or other inelastic channels are not included. For the s-waves a second
order polynomial is chosen peaking at about 5◦ at 2 MeV. While this is not an
exact match to the predicted phaseshifts of Ref. [1] it demonstrates the gross
features of a sign change in the 1m10 wave. While the 1m10 wave changed sign
the 2m20 wave was left constant.

Results are shown in Fig. 8. There is a clear difference in cross section
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between the two cases. Numerically, the difference in cross section is 3.6% at
0.548 MeV, 12.6% at 1 MeV, 11.5% at 2 MeV and 4.6% at 3 MeV, normalized
to the negative phaseshift case. For smaller angles, the differences naturally
become smaller. Therefore, from these calculations, the region between 0.8
and 2 MeV looks rather promising to measure the difference in the sign of the
phaseshift of the 1m10 wave.

5 Conclusions

The above fits and calculations demonstrate several points:

• To determine the phaseshifts of the s-wave, very good measurements of
the absolute cross section of 7Li/Be+p are necessary.

• Reasonable cross section data, i.e. 1-2% precision per point fix the indi-
vidual s-wave (and other) phaseshifts in a unique way. The two s-wave
phaseshifts cannot be traded against each other in fitting the data.

• The 7Li+p data of Warters et al. [5] result probably in unphysical phase-
shifts for some cases and should be remeasured. Note that these data have
been used for normalization in many subsequent measurements.
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Figure 8: Calculated cross section for elastic scattering in 7Be+p at 160◦, cm.
The upper and lower panels show two scales. The red line is for the 1m10 wave
with a positive phase shift, the green line for a negative phase shift.
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