TRIUMF — RESEARCH PROPOSAL		Experiment no. 923	Sheet 1 of 17		
Title of proposed experiment: Measurement of 25 Al + p Resonances through Elastic Scattering					
Name of group: TUDA					
Spokesperson for group:	A.A. C	hen / L. Buchmar	nn		
E-Mail address: achen@	triumf.ca	a F	ax number: (60	04)222-1074	
Members of the group (name, i	institution	, status, per cent of	time devoted to exper	iment)	
NameA.A. ChenL. BuchmannJ.M. D'AuriaT. DavinsonB. FultonD. GroombridgeA. MurphyP.D. ParkerJ. PearsonI. RobertsA. RobinsonC. RuizF. SarazinA. ShotterP. WaldenP. Woods	TRIUM Simon F Universi Universi Universi Universi Universi Universi TRIUM TRIUM	Fraser University F Fraser University ity of Edinburgh ity of York ity of York ity of Edinburgh iversity ity of York ity of Edinburgh ity of Edinburgh F F	Status Research Associ Research Scient Professor Research Scient Professor Professor Graduate Stude Graduate Stude Graduate Stude Research Fellow Professor Senior Research Professor	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Start of preparations:	2001	Beam tir 12-hr shi	ne requested: fts Beam line/chanı	nel Polarized primary beam?	
	ry 2002	$- \begin{array}{c} 32 \ (^{25}\text{Al}) & 2\text{A} \ / \ \text{ISAC} & \text{No} \\ 6 \ (\text{stable}) & \text{na} \ / \ \text{ISAC} & \text{na} \end{array}$			
Completion date:	2003				

SUMMARY	Expt # 923	Sheet 2 of 17
---------	------------	---------------

Within the context of explosive nucleosynthesis, the ${}^{25}\text{Al}(p,\gamma){}^{26}\text{Si}$ reaction bypasses the production of the important radionuclide ${}^{26}\text{Al}$. The present rate of the ${}^{25}\text{Al}(p,\gamma){}^{26}\text{Si}$ reaction suffers from significant uncertainties due to the lack of relevant structure information in the compound nucleus ${}^{26}\text{Si}$. We propose to measure the ${}^{25}\text{Al} + p$ elastic scattering reaction in inverse kinematics with the intent of exploring the level structure of ${}^{26}\text{Si}$ in more detail, and as a preliminary study to the potential measurement of the ${}^{25}\text{Al}(p,\gamma){}^{26}\text{Si}$ at the DRAGON facility. Using the TUDA facility and ${}^{25}\text{Al}$ beams from ISAC, the ${}^{25}\text{Al}(p,p){}^{25}\text{Al}$ reaction will be measured in inverse kinematics by taking energy scans in the CM energy range of about 400 - 1450 keV, with solid targets of polyethylene. This energy range covers the ${}^{25}\text{Al} + p$ resonances in ${}^{26}\text{Si}$ considered to be important in stellar explosions.

BEAM REQUIREMENTS	Expt # 923 Sheet 3 of 1
Experimental area	
TUDA facility in the ISAC experimental hall.	
Primary beam and target (energy, energy spread, intensity, pulse	e characteristics, emittance)
500 MeV proton beam from the TRIUMF cyclotron.	
Secondary channel ISAC - HE	
Secondary beam (particle type, momentum range, momentum bit	e, solid angle, spot size, emmittance, intensity,
Secondary beam (particle type, momentum range, momentum bit beam purity, target, special characteristics) The secondary beam required is ²⁵ Al with an inten with laboratory energies from 400 to 1500 keV/u.	sity of 10^7 particles per second and In addition, ²⁵ Mg stable beams of
Secondary beam (particle type, momentum range, momentum bit beam purity, target, special characteristics) The secondary beam required is ²⁵ Al with an inten	sity of 10^7 particles per second and In addition, ^{25}Mg stable beams of

SUPPORT REQUIREMENTS	Expt # 923	Sheet 4 of 17

TRIUMF SUPPORT:

Continued infrastructure support from TRIUMF for TUDA at ISAC, including assigned personnel.

NON-TRIUMF SUPPORT

The TUDA scattering facility, electronics, targets and detector systems will be provided by the University of Edinburgh group.

SAFETY	Expt # 923	Sheet 5 of 17
		1

Standard TUDA operation with short-lived radioactive isotopes (²⁵Al, $T_{1/2}=7.2$ sec). Low voltage detectors and electronics.

Sheet 6 of 17

1 Scientific Motivation

1.1 Introduction: The ${}^{25}Al(p,\gamma){}^{26}Si$ Reaction

Recent studies of ²⁶Al gamma-emission in the galaxy [1] and of ²⁶Al/²⁷Al isotopic anomalies in meteorites [2] have advanced our understanding of galactic and stellar evolution, as well as the origin of the solar system. While the observations of galactic gamma-ray emission point to massive stars as possible major contributors to the ²⁶Al distribution [3], at present the origin of the ²⁶Al remains an open question, requiring further understanding on how ²⁶Al is produced in various stellar settings. Within the present framework of nucleosynthesis in high temperature stellar environments such as novae, the production of ²⁶Al can be bypassed if the ²⁵Al(p, γ)²⁶Si reaction becomes faster than the β^+ decay of ²⁵Al [4]. The strengths and locations ²⁵Al+p resonances in ²⁶Si have been estimated using shell-model calculations and nuclear structure information from analog assignments [5], but the stellar reaction rate remains uncertain by about a factor of 1000, and no direct measurements have yet been attempted.

The present author, along with the DRAGON collaboration, has submitted a proposal to the TRIUMF EEC for a direct measurement of the ${}^{25}\text{Al}(p,\gamma){}^{26}\text{Si}$ reaction. The reader is referred to that proposal for a more detailed description of the nuclear astrophysics motivation than that given above. For the present proposal, we focus on the fact that the level structure of ${}^{26}\text{Si}$ is presently uncertain and warrants further study, as described in the ${}^{25}\text{Al}(p,\gamma){}^{26}\text{Si}$ proposal. The direct measurement of the ${}^{25}\text{Al}(p,\gamma){}^{26}\text{Si}$ reaction will be greatly aided by a more thorough knowledge of the structure of ${}^{26}\text{Si}$ at energies up to 1 MeV in the CM frame, especially with regard to s-wave resonances. Furthermore, measurements above $E_{cm} = 1$ MeV may provide constraints on mirror assignments for the levels below. The aim of the present experiment is to provide further information on the structure of ${}^{26}\text{Si}$ over this range of energies.

1.2 Spectroscopy of ²⁶Si

The ²⁵Al(p, γ)²⁶Si reaction rate has been estimated by Iliadis et al. [5]. The Q-value is 5518 keV. While resonances within 1 MeV of the proton threshold of ²⁶Si can contribute for temperatures less than 1.5 GK, they find that the rate at lower temperatures is dominated by an s-wave (J^{π} = 3⁺) resonance whose mirror is a known state in ²⁶Mg at E_x = 6.125 MeV. Iliadis et al. use Coulomb displacement energies to assign an energy of E_x = 5.970 MeV (E_r = 452 keV), with an associated uncertainty of ±100 keV. The widths and resonances strength have not been measured, and were also calculated using information available on the respective mirror state. Unfortunately, no 3⁺ resonance in ²⁶Si has been observed in this energy region to date. Overall, using the presently available nuclear structure information, the ²⁵Al(p, γ)²⁶Si rate at nova temperatures is uncertain by a factor of 100 - 1000. This uncertainty would be reduced with better spectroscopy of ²⁶Si although even then a direct measurement would still be necessary.

The structure of ²⁶Si has been determined from measurements of the ²⁸Si(p,t)²⁶Si [6] and ²⁴Mg(³He,n)²⁶Si [7] [8] reactions, and more recently through a measurement of the ²⁹Si(³He,⁶He)²⁶Si reaction [9]. Note that the (³He,⁶He) measurement should be sensitive to

Expt # 923 Sheet 7 of 17 DETAILED STATEMENT OF PROPOSED RESEARCH Excitation Energies(MeV) 7.100 7.063 5+ 6.978 3-6.880 6.878 6.789 2^{+} 6.745 (0-4) 6.634 41 6.622 6.470 2^{+} 5.350 0^{+} 6.256 31 6.125 (0^{+}) 5 962 5.910 (4^{+}) 5.716 5.687 5.690 562 5.518 5.474 4+ ²⁵Al + p 5.330 ²⁶Mg ²⁶Si

Fig. 1 Level structure of ²⁶Si close to the ²⁵Al+p threshold and the analog state region in ²⁶Mg. The solid arrow shows a firm mirror assignment, while dashed arrows show tentative assignments used in the present proposal.

unnatural parity states, while the two-nucleon transfer reactions are expected to populate them only weakly at best. Lastly, the ORNL/University of North Carolina group has recently remeasured the ²⁸Si(p,t)²⁶Si reaction [10], which should provide confirmation of the (p,t) results from Ref. [6] with better energy resolution (uncertainties $< \pm 10$ keV), and determination of spins and parities for many of the observed states. The data analysis is still in progress.

The energy levels of ²⁶Si and ²⁶Mg in the region of interest are shown in Figure 1, along with tentative analog assignments. Among the shortcomings in our present knowledge are the fact that many of the energies are not known to sufficient precision, ranging from ±15 keV for the best cases and ±30 for the worst. Furthermore, as already mentioned, the location of the key 3⁺ resonance is presently unknown. Another deficiency is that the mirror assignments from which information on partial widths are extracted are only tentative. One should also note that another s-wave resonance corresponding to a T=1 level in ²⁶Al at $E_x = 6.85$ MeV has yet to be observed in either ²⁶Si or ²⁶Mg.

The discussion above points to the need for further study of the structure of ²⁶Si. Our expectation is that the situation will be further elucidated with results from ongoing and planned experiments. For example, the ORNL/UNC (p,t) experiment data analysis is almost complete. Also, a measurement of the $p(^{27}Si,d)^{26}Si$ is planned at the Michigan State University coupled-cyclotron facility next year [11], which should provide further information.

E_x (keV)	$E_r \; (\mathrm{keV})$	$E_{^{25}Al}(\text{MeV})$	$J^{\pi a)}$	ℓ	$\Gamma \ (\text{keV})^{\ b)}$
5687(15)	169(15)	4.358	(3^{+})	s, d, g	$8.1 \times 10^{-5 c}$
5910(30)	392(30)	10.110	(4^{+})	d,g	4.4×10^{-5}
5962(15)	444(15)	11.451	(0^+)	d	2.2×10^{-5}
6350(25)	832(25)	21.457	2^{+}	s, d, g	7.9×10^{-2}

Table 1 Level parameters adopted for low-lying ${}^{25}AI + p$ resonances.

^{a)} Assignments in parentheses are tentative.

^{b)} Derived from estimates in Ref. [5].

^{c)} Width scaled from estimate for 3^+ state at $E_x = 5970(100)$ keV in Ref. [5].

Another useful approach is the measurement of elastic scattering. This method has already been used successfully to measure ²¹Na+p resonances in ²²Mg [12], providing level structure information and guidance for the subsequent direct measurements of the radiative capture reaction with the DRAGON facility. At ISAC, with ²⁵Al beams, we propose to probe the resonance structure of ²⁶Si using elastic scattering, which generally can provide information on energies, total widths and spins. However, since the ²⁵Al+p system has two entrance channel spins (s = 2 or 3), the final spin of the state needs to be derived through other means, such as nuclear structure arguments or analog assignments. The spin may also be extracted from the angular distribution of the scattered protons. If present estimates are correct, however, the widths of the lowest resonances (listed in Table 1) are likely to be too narrow for measurement with elastic scattering. Nevertheless, the widths of the higher energy resonances are likely to be sufficiently broad ($\Gamma > 1$ keV). Note from Figure 1 that the spins of these higher resonances are presently unknown.

One should mention in passing that while elastic scattering will be sensitive primarily to resonances at higher energies, these measurements can be complemented with a measurement of the ${}^{24}\text{Al}({}^{3}\text{He},p){}^{26}\text{Si}$ transfer reaction in inverse kinematics. Near-threshold states in ${}^{26}\text{Si}$ are determined by detecting the proton groups. This reaction has the advantage of a large Q-value of 14.732 MeV, which allows for many excited states in ${}^{26}\text{Si}$ to be populated. Also, only relatively low beam intensities ($\sim 10^{5}$ particles/second) are required. We plan to propose a measurement of this reaction with the TUDA facility and a ${}^{3}\text{He}$ gas cell once the technique has been developed in the context of another proposal by the TUDA collaboration to the TRIUMF EEC to measure the ${}^{17}\text{Ne}({}^{3}\text{He},p){}^{19}\text{Na}$ [13].

2 Experimental Description

2.1 Experimental Technique

The experiment will be carried out in inverse kinematics with beams of 25 Al (T_{1/2} = 7.2 seconds) from the TRIUMF-ISAC facility and polyethylene (CH₂) targets in the TUDA scattering chamber. TUDA has been specifically designed for studying charged particle reactions in inverse kinematics using the well-known LEDA silicon detector arrays, developed by the University of Edinburgh group, and allows for flexible set-up of detector configuration to suit a given experiment. To date, the TUDA facility has already been commissioned, and first elastic scattering experiments have been successfully performed

Sheet 9 of 17

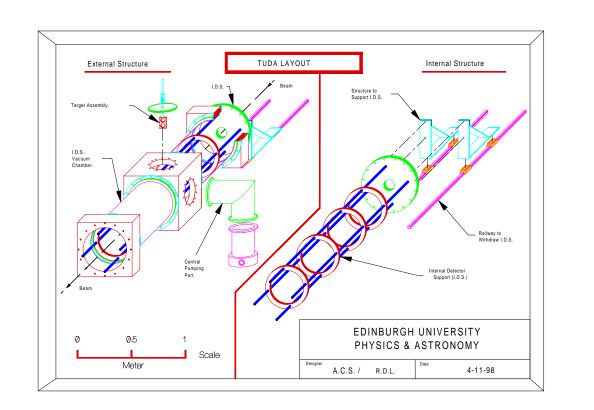


Fig. 2 TUDA schematic

and analyzed.

Each LEDA detector consist of 8 sectors. Each sector is further comprised of 16 silicon strips which provide information on the scattering angle. Each strip is 4 mm wide, resulting in an angular resolution of about 1° at a distance of 20 cm away from the target location. The performance of these detectors has been well established in previous measurements, with an energy resolution of 25 keV for 5.5 MeV alpha-particles and a timing resolution of 1-2 nsec. At present, TUDA has the capability of 256 channels, although an upgrade to 512 channels is anticipated for 2002.

The measurement will consist of a systematic search for states in ²⁶Si within $E_{cm} = 1.45$ MeV above the proton threshold. This will require ISAC beams in the laboratory energy range of 400-1500 keV/u. A survey of the excitation function will be measured with thick target scans over the full energy range. $(CH_2)_n$ targets of 250 μ g/cm², corresponding to an energy scan of 240 keV/u, will be used for this purpose. Thin $(CH_2)_n$ targets of 50 μ g/cm² will be used to study specific resonances in more detail.

The recoil protons from the target will be detected with a configuration of two LEDA arrays in the forward hemisphere to maximize solid angle coverage. The lower limit for the laboratory angle is determined by the maximum scattering angle of 2.3° for the 25 Al. The two detectors will be set up to give a coverage in lab solid angle from 4° to 33° . The main sources of scattered background come from recoil scattering of 12 C from the target, and scattering of 25 Al from the 12 C with a maximum opening angle of 30° for low beam energies. The detectors will be covered with mylar foils of sufficient thickness to suppress this scattered background. One detector will be left unprotected in order to normalize to the scattering of 25 Al off the 12 C, and to monitor the hydrogen depletion

in the polyethylene target. Further suppression of background (including the beta-decay positrons) will be achieved using the RF time structure of the beam. Gain-matching will be performed with an alpha source. For each energy, short runs with a C/Au foil will be taken for beam normalization, assuming that the 25 Al scattering on gold has a pure Rutherford cross-section.

In order to estimate a typical count rate in one strip, we assume a Rutherford crosssection of 35 mb/sr at $\theta(\text{lab}) = 30^{\circ}$, a 1° coverage corresponding to a strip width of 4 mm located about 20 cm upstream from the target, and a thin target thickness of about 4×10^{18} hydrogen atoms/cm². For an ²⁵Al beam intensity of 10⁷ particles/second, the resulting count rate per strip is about 1 event/minute. At these rates, we expect to obtain high statistical accuracy quickly by integrating over the large angular range of the TUDA array.

Prior to the $p(^{25}Al,p)^{25}Al$ measurement, known resonances in the $^{25}Mg(p,p)^{25}Mg$ reaction will be used to calibrate the TUDA facility. Several broad resonances have been seen in other $^{25}Mg(p,p)^{25}Mg$ studies [14], which can be used for this purpose. Beam currents comparable or slightly higher to that used for the radioactive ^{25}Al beam measurements will be requested.

3 Beam Time Required

The estimates below assume a beam intensity of 10^7 particles/second for both stable and radioactive beams.

For stable beam calibration using ${}^{25}Mg(p,p){}^{25}Mg$, 2 calibration points with high statistics will be measured at known resonances, requiring a total of 6 shifts.

For the $p(^{25}Al,p)^{25}Al$ measurement, thick target scans will be performed over the energy range of 400-1500 keV/u. The average energy range covered in a single scan is about 210 keV/u. As a consistency check, each scan will overlap the previous one by 100 keV/u, therefore requiring 10 scans to cover the full energy range. Assuming 2 shifts for each scan, the beam time requirements for the thick target scans are 20 shifts of ^{25}Al beam. For thin target scans over selected resonances, we assume measurements for 4 resonances with 3 shifts/resonance, resulting in a total of 12 shifts.

In summary:

- Stable 25 Mg beam shifts: 6
- Total radioactive ²⁵Al beam shifts: 32
- Total shifts: 38

References

- 1. R. Diehl et al., Astron. and Astrophys. 97 181 (1993).
- 2. G.J. Wasserburg, in *Protostars and Planets II*, edited by D.C. Black and M.S. Matthews (University of Arizona Press, Tucson, 1985), p. 703.
- 3. J. Knödlseder, Ap. J. 510 915 (1999).
- M. Wiescher, H. Schatz and A.E. Champagne, *Phil. Trans. R. Soc. Lond.*, A236, 2105, (1998).
- 5. C. Iliadis et al., *Physical Review* C 53 475 (1996).
- 6. R.A. Paddock, *Physical Review* C 5 485 (1972).
- 7. W. Bohne et al., Nuclear Physics A378 525 (1982).
- 8. W.P. Alford et al., Nuclear Physics A457 317 (1986).
- 9. J. Caggiano, private communication (2001).
- 10. D.W. Bardayan, private communication (2001).
- 11. H. Schatz, private communication (2001).
- 12. C. Ruiz et al., to be submitted (2001).
- 13. F. Sarazin and L. Buchmann for the TUDA collaboration, proposal submitted to the TRIUMF EEC (2001).
- 14. G. Adams et al., Journal of Physics G 10 1747 (1984).

Include publications in refereed journal over at least the previous 5 years.

- B. Harss, C.L. Jiang, K.E. Rehm, J.P. Schiffer, J. Caggiano, P. Collon, J.P. Greene, D. Henderson, A. Heinz, R.V.F. Janssens, J. Nolen, R.C. Pardo, T. Pennington, R.H. Siemssen, A.A. Sonzogni, J. Uusitalo, I. Wiedenhöver, M. Paul, T.F. Wang, F. Borasi, R.E. Segel, J.C. Blackmon, M.S. Smith, A.A. Chen, and P.D. Parker, "Widths of Astrophysically Important Resonances in ¹⁸Ne," submitted to Physical Review C (2001).
- A.A. Chen, R. Lewis, K.B. Swartz, D.W. Visser, and P.D. Parker, "The Structure of ²²Mg and its Implications for Explosive Nucleosynthesis," Physical Review C 63, 065807 (2001).
- 3. A.A. Chen, R. Lewis, K.B. Swartz, and D.W. Visser, and P.D. Parker, "The Structure of ²²Mg and and its Implications for Explosive Nucleosynthesis," Nuclear Physics A688 146c-149c, (2001).
- 4. J.C. Blackmon, D.W. Bardayan, W. Bradfield-Smith, A.E. Champagne, A.A. Chen, T. Davinson, K.I. Hahn, R.L. Kozub, Z. Ma, P.D. Parker, G. Rajbaidya, R.C. Runkle, C.M. Rowland, A.C. Shotter, M.S. Smith, K.B. Swartz, D.W. Visser and P.J. Woods, "Determination of the ¹⁴O(α, p)¹⁷F_{g.s.} Reaction Rate by Measurement of the ¹H(¹⁷F, α)¹⁴O Cross Section," Nuclear Physics A688 142c-145c, (2001)
- 5. D.W. Bardayan, J.C. Blackmon, C.R. Brune, A.E. Champagne, A.A. Chen, J.M. Cox, T. Davinson, V.Y. Hansper, M.A. Hofstee, B.A. Johnson, R.L. Kozub, Z. Ma, P.D. Parker, D.E. Pierce, M.T. Rabban, A.C. Shotter, M.S. Smith, K.B. Swartz, D.W. Visser, and P.J. Woods, "The Astrophysically Important 3⁺ State in ¹⁸Ne and the ¹⁷F(p, γ)¹⁸Ne Stellar Rate," Physical Review C 62, 055804 (2000).
- 6. D.W. Bardayan, J.C. Blackmon, C.R. Brune, A.E. Champagne, A.A. Chen, J.M. Cox, T. Davinson, V.Y. Hansper, M.A. Hofstee, B.A. Johnson, R.L. Kozub, Z. Ma, P.D. Parker, D.E. Pierce, M.T. Rabban, A.C. Shotter, M.S. Smith, K.B. Swartz, D.W. Visser, and P.J. Woods, "Observation of the Astrophysically Important 3⁺ State in ¹⁸Ne via Elastic Scattering of a Radioactive ¹⁷F Beam from ¹H," Physical Review Letters 83 1, 45 (1999).
- 7. B. Harss, J.P. Greene, D. Henderson, R.V.F. Janssens, C.L. Jiang, J. Nolen, R.C. Pardo, K.E. Rehm, J.P. Schiffer, R.H. Siemssen, A.A. Sonzogni, J. Uusitalo, I. Wiedenhöver, M. Paul, T.F. Wang, F. Borasi, R.E. Segel, J.C. Blackmon, M.S. Smith, A. Chen, P. Parker, "Stellar Reactions with Short-Lived Nuclei: ¹⁷F(p, α)¹⁴O," Physical Review Letters 82 20, 3964 (1999).
- 8. K.O. Yildiz, N.P.T. Bateman, Y.M. Butt, A.A. Chen, K.B. Swartz, P.D. Parker, "Thick Target Yields of ${}^{26}\text{Al}_{g.s.}$ from the ${}^{16}\text{O}({}^{16}\text{O}, x){}^{26}\text{Al}_{g.s.}$ and ${}^{16}\text{O}({}^{14}\text{N}, x){}^{26}\text{Al}_{g.s.}$ Reactions," Physical Review C 60, 028801 (1999).
- 9. N.P.T. Bateman, D.W. Bardayan, Y.M. Butt, A.A. Chen, K.O. Yildiz, B.M. Young, P.D. Parker, "Thick Target Yield of ²⁶Al from the ${}^{12}C({}^{16}O, x){}^{26}Al_{g.s.}$ Reaction," Physical Review C 57 4, 2022 (1998).
- S. Utku, J.G. Ross, N.P.T. Bateman, D.W. Bardayan, A.A. Chen, J. Görres, A.J. Howard, C. Iliadis, P.D. Parker, M.S. Smith, R.B. Vogelaar, M. Wiescher, K. Yildiz,

"Breakout from the Hot CNO Cycle: The ${}^{18}F(p, \gamma)$ vs. ${}^{18}F(p, \alpha)$ Branching Ratio," Physical Review C 57 5, 2731 (1998), Erratum: Physical Review C 58 2, 1354 (1998).

- N.P.T. Bateman, D.W. Bardayan, Y.M. Butt, A.A. Chen, K.O. Yildiz, B.M. Young, P.D. Parker, A.E. Champagne, "The Production of ²⁶Al in the Early Solar System by Oxygen Rich Cosmic Rays," Proceedings of the 4th International Conference on Nuclei in the Cosmos, Nuclear Physics A621 60c-63c, eds. J. Görres, G. Mathews, S. Shore, M. Wiescher (1997).
- 12. L. Buchmann, R.E. Azuma, C.A. Barnes, A. Chen, J. Chen, J.M. D'Auria, M. Dombsky, U.Giesen, K.P. Jackson, J.D. King, R. Korteling, P. McNeely, J. Powell, G. Roy, M. Trinczek, J. Vincent, P.R. Wrean, S.S.M. Wong, "The β-delayed α Spectrum of ¹⁶N and the Low-energy Extrapolation of the ¹²C(α, γ)¹⁶O Cross Section," Proceedings of the 2nd International Conference on Nuclei in the Cosmos, Journal of Physics G: Nuclear and Particle Physics 19 S115-S126 (1993).
- 13. L. Buchmann, "Radiative cascade transitions and the ${}^{12}C(\alpha,\gamma){}^{16}O$ E2 cross section to the ground state of ${}^{16}O$ ", Phys. Rev. C., 64 022801(R) (2001)
- N. Bateman, K. Abe, G. Ball, L. Buchmann, J. Chow, J.M.D'Auria, Y. Fuchi, C. Iliadis, H. Ishiyama, K.P. Jackson, S. Karataglidis, S. Kato, S. Kubono, K. Kumagai, M. Kurokawa, X. Liu, S. Michimasa, P. Strasser, and M.H. Tanaka, "Measurement of the ²⁴Mg(p,t)²²Mg reaction and implications for the ²¹Na(p,γ)²²Mg stellar reaction rate", Phys. Rev. C, 63 (2001) 035803
- 15. L.Buchmann, E.Gete, J.C.Chow, J.D.King, and D.F. Measday, "The β -delayed particle decay of ⁹C and the A-9, T=1/2 nuclear system; *R*-matrix fits, the A=9 nuclear system, and the stellar reaction rate of ⁴He(α n, γ)⁹Be", Phys. Rev. C., 63 (2001) 034303
- 16. E.Gete, L.Buchmann, R.E.Azuma, D.Anthony, N.Bateman, J.C.Chow, J.M.D'Auria, M.Dombsky, U.Giesen, C.Illiadis, K.P.Jackson, J.D.King, D.F. Measday, and A.C.Morton, "The β-delayed particle decay of ⁹C and the A-9, T=1/2 nuclear system; Experiment, data and phenomenological analysis", Phys. Rev. C., 61 (2000) 064310
- A.Y.Zyuzin, L.R.Buchmann, J.S.Vincent, K.R.Buckley, N.O.Bateman, K.A.Snover, J.M.Csandjan, T.D.Steiger, E.G.Adelberger, and H.E.Swanson, "Metallic beryllium-7 target of small diameter", Nucl. Inst. Meth., A438 (1999) 109
- E.G.Adelberger, S.A.Austin, J.N.Bahcall, A.B.Balantkin, G.Bertsch, G.Bognert, L.S.Brown, L.Buchmann, F.E.Cecil, A.E.Champagne, L. de Braeckeleer, C.A.Duba, S.E.Elliott, S.J. Freedman, M.Gai, C.Goldring, C.R.Gould, A.Cruzinov, W.C.Haxton, K.M. Hoeger, E.Henley, C.W.Johnson, M. Kamionskowski, R.W. Kavanaugh, S.E.Koonin, K.Kubodera, K.Langanke, T. Motobayashi, V, Pandharipande, P.Parker, R.G.H. Robertson, C.Rolfs, R.F. Sawyer, N.Shaviv, T.D.Shoppa, K.Snover, E.Swanson, R.E.Tribble, S. Turck-Chiene, and J.F. Wikerson, "Solar Fusion Rates", Rev. Mod. Phys., 70 (1998) 1265
- J.Görres, J. Meißner, H.Schatz, E.Stech, P.Tischhauser, M.Wiescher, R.Harkewics, B.Sherrill, M.Steiner, D. Bazin, M.Hellström, D.J.Morrissey, R.N.Boys, L.Buchmann, D.H.Hartmann, J.D.Hinnefeld, "Lifetime of ⁴⁴Ti as probe of supernova models", Phys. Rev Lett. 80 (1998) 2554

- J.C.Chow, A.C.Morton, R.E.Azuma, N.Bateman, R.N.Boyd, L.Buchmann, J.M.D'Auria, T.Davinson, M.Dombsky, W.Galster, E.Gete, U.Giesen, C.Iliadis, K.P.Jackson, J.D.King, G.Roy, T.Shoppa, and A.Shotter, "Three-particle break-up of the isobaric analogue state in ¹⁷F", Phys. Rev. C 57, (1998) R475
- J.A.Behr, A.Gorelov, T.Swanson, O.Häusser, K.P.Jackson, M.Trinczek, U.Giesen. J.M.D'Auria, R.Hardy, T.Wilson, P.Choboter, F.Leblond, L.Buchmann, M.Dombsky, C.D.P. Levy, G.Roy, B.A.Brown, and J.Dilling, "Magnetooptic trapping of β-decaying ^{38m}K, ³⁷K from an on-line isotope separator", Phys. Rev. Lett. 79, (1997) 375
- J.D'Auria, L.Buchmann, D.Hutcheon, P.Lipnik, D.Hunter, J.Rogers, R.Helmer, U.Giesen, A.Olin, P.Bricault, N.Bateman, "A facility for studying radiative capture reactions induced with radioactive beams at ISAC", Nucl. Inst. Meth. B, 126 (1997) 262
- 23. L.Buchmann, "New stellar reaction rate for $^{12}{\rm C}(\alpha,\gamma)^{16}{\rm O}$ ", Ap.J., 468 (1996) L127, Erratum: Ap.J., 479 (1997) L153
- C.Iliadis, R.E.Azuma, L.Buchmann, J.Chow, J.M.D'Auria, M.Dombsky, U.Giesen, J.D.King, and A.C. Morton, "Beta-delayed particle decay of ³⁶K", Nucl. Phys. A 609 (1996) 237
- 25. L.Buchmann, R.E.Azuma, C.A.Barnes, K,Langanke, and J.Humblet, "An analysis of the total ${}^{12}C(\alpha,\gamma){}^{16}O$ cross section based on available angular distributions and other primary data", Phys. Rev. C, 54, (1996) 393
- 26. C.Iliadis, L.Buchmann, P.M.Endt, H.Herndl, and M.Wiescher, "New stellar reaction rates for ${}^{25}Mg(p,\gamma){}^{26}Al$ and ${}^{25}Al(p,\gamma){}^{26}Si$ ", Phys.Rev. C, 53 (1996) 475
- 27. R.E.Azuma, L.Buchmann, F.C.Barker, C.A.Barnes, J.D'Auria, M.Dombsky, U.Giesen, K.P. Jackson, J.D.King, R.Korteling, P.McNeely, J.Powell, G.Roy, J.Vincent, T.R.Wang, S.S.M.Wong, and P.W.Wrean, "Constraints on the low-energy *E*1 cross section of ¹²C(α,γ)¹⁶O from the β-delayed α-spectrum of ¹⁶N", Phys. Rev. C., 50 (1994) 1194 Erratum Phys. Rev. C., 56 (1997) 1655
- M.Dombsky, L.Buchmann, J.M.D'Auria, U.Giesen, K.P.Jackson, J.D.King, E.Korkmaz, R.Korteling, P.McNeely, J.Powell, G.Roy, M.Trinczek, and J.Vincent, "β-delayed α-Decay of ¹⁷N", Phys. Rev. C, 49 (1994) 1867
- S.Kubono, C.C.Yun, R.N.Boyd, L.R.Buchmann, Y.Fuchi, M.Hosaka, N.Ikeda, C.L.Jiang, I.Katayama, H.Kawashima, H. Miyatake, T.Niizeki, T.Nomura, A.Odawara, M.Ohura, H.Ohnuma, H.Orihara, C.Rolfs, T. Shimoda, Y. Tajima, M.H.Tanaka, and H.Toyokawa, "High resolution study of ²⁴Mg(d,p)²³Mg for the Ne-E problem", Z.Phys. A 348 (1994) 59
- L.Buchmann, R.E.Azuma, C.A.Barnes, J.D'Auria, M.Dombsky, U.Giesen, K.P. Jackson, J.D.King, R.Korteling, P.McNeely, J.Powell, G.Roy, M.Trinzcek, J.Vincent, S.S.M.Wong, and P.W.Wrean "A study of beta delayed alpha emission from ¹⁶N" Nucl. Inst. Meth., B79 (1993) 330
- L.Buchmann, R.E.Azuma, C.A.Barnes, A.Chen, J.Chen, J.D'Auria, M.Dombsky, U.Giesen, K.P. Jackson, J.D.King, R.Korteling, P.McNeely, J.Powell, G.Roy, M.Trinzcek,

PUBLICATION LIST OF SPOKESPERSON(S)

J.Vincent, S.S.M.Wong, and P.W.Wrean "The β -delayed α -spectrum of ¹⁶N and the low-energy extrapolation of the ¹²C(α,γ)¹⁶O cross section", J. Phys. G Nucl. Part. Phys. 19 (1993) S115

- 32. L.Buchmann, R.E.Azuma, C.A.Barnes, J.D'Auria, M.Dombsky, U.Giesen, K.P. Jackson, J.D.King, R.Korteling, P.McNeely, J.Powell, G.Roy, J.Vincent, T.R.Wang, S.S.M.Wong, and P.W.Wrean, " β -delayed α -spectrum of ¹⁶N and the ¹²C(α,γ)¹⁶O cross section at low energies", Phys. Rev. Let. 70,6 (1993) 726
- 33. J.M.D'Auria, L.Buchmann, M.Dombsky, P.McNeely, G.Roy, H.Sprenger, and J.Vincent, "Upgrade of the TRIUMF on-line separator, TISOL", Nucl. Inst. Meth., B70 (1992) 75
- 34. M.Dombsky, L.Buchmann, J.M.D'Auria, P.McNeely, G.Roy, H.Sprenger, and J.Vincent, "Targets and ion sources at the TISOL facility", Nucl. Inst. Meth., B70 (1992) 125
- L.Buchmann, J.Vincent, H.Sprenger, J.D'Auria, M.Dombsky, P.McNeely, and G.Roy, "The ECR ion source at the TRIUMF isotope separator TISOL", Rev.Sci.Instrum., 63,4 (1992) 2387
- C.D.P.Levy, L.Buchmann, K.Jayamanna, M.McDonald, R.Ruegg, P.W.Schmor and A.N.Zelenski, "A d.c. polarized H⁻ ion source based on optically pumped rubidium", Rev.Sci.Instrum., 63,4 (1992) 2625
- 37. L.Buchmann, J.Vincent, H.Sprenger, M.Dombsky, J.M.D'Auria, P.McNeely, and G.Roy, "The ECR ion source at the TRIUMF isotope separator, TISOL", Nucl. Inst. Meth. B62 (1992) 521
- 38. J.D.King, D.Frekers, R.Abegg, R.E.Azuma, L.Buchmann, C.Chan, T.E.Drake, R.Helmer, K.P.Jackson, L.Lee, C.A.Miller, E.Rost, R.Sawafta, R.Schuhbank, S.S.M.Wong, S.Yen, and X.Zhu, "Excitation of the 10.957 MeV 0⁻; T=0 state in ¹⁶O by 400 MeV Protons", Phys.Rev.C, 44, 3 (1991) 1077
- L.Buchmann, K.Jayamanna, C.D.P.Levy, M.McDonald, R.Ruegg,
 P.W.Schmor, A.Belov, V.G.Polushkin, and A.N.Zelenski, "A DC optically pumped, polarized H⁻ source", Nucl. Inst. Meth. (1991), A306 (1991) 413
- L.Buchmann, "A proton polarimeter for beam energies below 300 keV", Nucl. Instr. Meth. (1991), A301 (1991) 383
- 41. J.D'Auria and L. Buchmann, "Radioactive beams facilities: A status report", Nucl. Instr. Meth. B56/57 (1991) 516
- 42. M.Dombsky, J.M.D'Auria, L.Buchmann, H.Sprenger, J.Vincent, P.McNeely, and G.Roy, "Target and ion source development at the TISOL facility at TRIUMF", Nucl. Instr. Meth., A295 (1990) 291
- 43. J.M. D'Auria, M.Dombsky, L.Buchmann, and J.S. Vincent, "Studies related to the production of an isotopically pure ²²Na radioactive target", Nucl. Instr. Meth. A288 (1990) 354
- 44. P.McNeely, G.Roy, J.Soukup, J.M.D'Auria, L.Buchmann, M.McDonald, P.W.Schmor, H.Sprenger, and J.Vincent, "The UoA/TRIUMF radioactive beam ECR ion source", Rev.Sci.Instrum. 61,1 (1990) 273

- J.M. D'Auria, M. Dombsky, L. Buchmann, J.D. Vincent, and J.D. King, "The proposed ISAC facility at TRIUMF", Nucl. Instr. Meth., B40/41 (1989) 418
- 46. M. Wiescher, J. Gőrres, S. Graff, L.Buchmann, F.-K. Thielemann, "The hot pp-Chains in Low Metallicity Objects", Ap. J. 343 (1989) 352
- 47. L.Lee, T.E.Drake, S.S.M.Wong, D.Frekers, R.E.Azuma, L.Buchmann, A.Galindo-Uribari, J.D.King, R.Schubank, R.Abegg, R.Helmer, K.P.Jackson, C.A.Miller, and S.Yen,"Intermediate-energy proton scattering to the ground and negative parity states of ⁴⁰Ca, ⁹⁰Zr and ²⁰⁸Pb", Nucl. Phys. A492 (1989) 607
- 48. L.Lee, T.E.Drake, S.S.M.Wong, D.Frekers, R.E.Azuma, L.Buchmann, A. Galindo-Uribarri, J.D. King, R.Schubank, R.Abegg, R. Helmer, K.P. Jackson, C.A.Miller, and S.Yen, "Inelastic proton scattering to the positive-parity states in ⁹⁰Zr at 400 MeV", J.Phys. G, 15 (1989) L91
- P.McNeely, G.Roy, J.Soukup, J.M.D'Auria, L.Buchmann, M.McDonald, P.W.Schmor, and H.Sprenger, "An ECR ion source for radioactive beams at TRIUMF", J.d.Phys., 50 (1989) Cl 807
- 50. L.Buchmann, J.M.D'Auria, and P.McCorquodale, "Stellar reaction rates of alpha capture on light $(N \neq Z)$ Nuclei and their astrophysical implications", Ap. J.,324 (1988) 953
- 51. L.Lee, T.E.Drake, S.S.M. Wong, D.Frekers, R.E.Azuma, L.Buchmann, A. Galindo-Uribari, J.D.King, R.Schubank, R.Abegg, R.Helmer, K.P.Jackson, C.A. Miller, S.Yen, and H.V. von Geramb, "Intermediate energy proton scattering from ⁴⁰Ca, ⁹⁰Zr and ²⁰⁸Pb", Phys. Lett. B, 205 2,3, (1988) 219
- L.Buchmann, J.M.D'Auria, J.D.King, G.Mackenzie, H.Schneider, R.B.Moore, and C.Rolfs, "An Isol/postaccelerator facility for nuclear astrophysics at TRIUMF", Nucl. Instr. Meth., B26 (1987) 151
- L.Buchmann, T.Mattman, J.M.D'Auria, E.Devita, H.Schneider, A.Otter, H.Sprenger, and P.W.Schmor, "A conceptual design of an ECR source for an Isol facility", Nucl. Instr. Meth., B26 (1987) 253
- 54. J.E.Crawford, J.K.P.Lee, R.B.Moore, H.Dautet, F.Buchinger, K.Oxorn, L.Nikkinen, J.M.D'Auria, L.Buchmann, J.Vincent, and J.King, "A proposed radioactive beam facility at TRIUMF", Nucl. Instr. Meth. B26 (1987) 128
- 55. K.Oxorn, J.E.Crawford, H.Dautet, J.K.P.Lee, R.B.Moore, L.Nikkiinen, L.Buchmann, J.M.D'Auria, R.Kokke, A.J.Otter, H.Sprenger, and J.Vincent, "The installation of a prototype on-line isotope separator at TRIUMF (TISOL)", Nucl. Instr. Meth., B26 (1987) 143
- 56. U.Schrőder, A.Redder, C.Rolfs, R.E.Azuma, L.Buchmann, C.Campbell, J.D. King, and T.R. Donoghue, "Astrophysical S Factor of ${}^{3}H(\alpha, \gamma)^{7}Li$ ", Phys. Lett. B, 192 1,2 (1987) 55
- 57. H.P.Trautvetter, H.W.Becker, U.Heinemann, L.Buchmann, C.Rolfs,
 F.Käppeler, M.Baumann, H.Freiesleben, H.J.Lutke-Stetzkamp,
 P.Geltenbort, and F.Gonnenwein, "Destruction of ²⁶Al in explosive nucleosynthesis",
 Z.Phys.A, 323 (1986) 1

- 58. C.A.Miller, A.Scott, R.Abegg, R.Helmer, K.P.Jackson, M.Whiten, S.Yen, L.Lee, T.E.Drake, D.Frekers, S.S.M.Wong, R.E.Azuma, L.Buchmann, A. Galindo-Uribari, J.D.King, R.Schubank, R.Dymarz, H.V. von Geramb, and C.J.Horowitz, "Large angle elastic scattering of 200 MeV protons from ²⁰⁸Pb", Phys. Lett., 169B, 2,3 (1986) 166
- 59. L.Lee, T.E.Drake, L.Buchmann, A.Galindo-Uribarri, R.Schubank, R.J. Sobie, D.R.Gill, B.K.Jennings, N. de Takacsy, "Evidence for the suppression of multiple scattering in¹²C(π,π') at low energies", Phys. Lett. B, 174, 2 (1986) 147
- L.Buchmann, J.M.D'Auria, G. Mackenzie, H.Schneider, R.B.Moore, "Development of a radioactive beams (RB) accelerator using ISOL as a source", IEEE, Nucl. Sc. 32,5 (1985) 3330
- L.Buchmann, M.Hilgemeier, A.Krauss, A.Redder, C.Rolfs, H.P. Trautvetter, and T.R. Donoghue, "The abundance of ²⁶Al in the MgAl cycle", Nucl. Phys., A415 (1984) 93
- L.Buchmann, H.Baumeister, and C.Rolfs, "The fabrication of ²⁶Al targets", Nucl. Instr. Meth., B4 (1984) 132
- 63. P.Schmalbrock, H.W.Becker, L.Buchmann, J.Gőrres, C.Rolfs, H.P.Trautvetter, and W.S.Rodney, "Search for γ-ray transitions within the ⁵Li Groundstate", Z. Phys. A., 310 (1983), 243
- 64. J. Gőrres, H.W. Becker, L.Buchmann, C.Rolfs, P.Schmalbrock, H.P.Trautvetter, A.Vlieks, J.W.Hammer, T.R.Donoghue, "Proton-induced direct capture on ²¹Ne and ²²Ne", Nucl. Phys., A408 (1983), 372
- 65. P.Schmalbrock, H.W.Becker, L.Buchmann, J.Gőrres, K.U.Kettner, W.E.Kieser, H.Kräwinkel, C.Rolfs, and H.P.Trautvetter, "Stellar reaction rate of 20 Ne(α, γ)²⁴Mg", Nucl. Phys., A398 (1983) 279
- 66. K.U.Kettner, H.W.Becker, L.Buchmann, J.Gőrres, H.Kräwinkel, C.Rolfs, P.Schmalbrock, H.P.Trautvetter, and A.Vlieks, "The ${}^{4}\text{He}({}^{12}\text{C},\gamma){}^{16}\text{O}$ reaction at stellar energies", Z. Phys. A, 308 (1982) 73
- 67. H.W.Becker, L.Buchmann, J.Gőrres, K.U.Kettner, H.Kräwinkel, C.Rolfs, P.Schmalbrock, H.P.Trautvetter, and A.Vlieks, "A supersonic jet gas target for γ spectroscopy measurements", Nucl. Inst. Meth., 198 (1982) 277
- 68. H.Kräwinkel, H.W.Becker, L.Buchmann, J.Gőrres, K.U.Kettner, W.E. Kieser, R.Santo, P.Schmalbrock, H.P.Trautvetter, A.Vlieks, C.Rolfs, J.W. Hammer, R.E.Azuma, W.S.Rodney, "The ³He(α , γ)⁷Be reaction and the solar neutrino problem", Z. Phys. A., 304 (1982) 307
- 69. L.Buchmann, H.W.Becker, K.U.Kettner, W.E.Kieser, P.Schmalbrock, and C.Rolfs, "Stellar reaction rate of ${}^{26}Mg(p,\gamma){}^{27}Al$ ", Z. Phys. A., 296 (1980) 273
- 70. K.Elix, H.W.Becker, L.Buchmann, J.Gőrres, K.U.Kettner, M.Wiescher, and C.Rolfs, "Search for low-energy resonances in ${}^{25}Mg(p,\gamma)$ ${}^{26}Al$ ", Z. Phys. A, 293 (1979) 261