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Abstract
The breakout of the hot CNO cycle and the onset of the rapid-proton

process are of significant importance to our understanding of the nucleosyn-

thesis of proton-rich nuclei in our universe. In particular 15O(α, γ)19Ne and

21Na(p,γ)22Mg are both thought to be key reactions for these processes un-

der explosive astrophysical conditions. In this work, an experiment has been

carried out at Louvain-la-Neuve, Belgium, in order to test the feasibility of

a measurement of the lifetime of the 4.033 MeV state in 19Ne, which is

considered extremely important for the 15O(α, γ)19Ne reaction. Also, an

elastic-scattering experiment was performed using a newly-developed 21Na

beam at the ISAC post-accelerated radioactive beam facility in Vancouver,

Canada. The experiment represents the first scientific result achieved with

this facility. A centre-of-mass energy range of ≈ 0.4-1.5 MeV was inves-

tigated using a thick-target scan technique utilising polyethylene ([CH2]n)

foils. Data were collected using a silicon charged-particle detector array,

enabling the identification of elastic and inelastic resonances in the 21Na+p

system. Monte-Carlo simulations were used to estimate the experimental

resolution effects present in the experiment. These results were then incor-

porated into an analysis of the data using a single-channel ` = 0 R-matrix

code. An analysis of the data enabled the identification of four states in

22Mg, one of which was previously unobserved. Resonance energies and

widths were estimated for each of these states. A comparison of the results

with states in the T=1 analogue system was made. The effect a detailed

knowledge of these resonances would have on the 21Na(p,γ)22Mg rate under

extreme high temperature conditions was also investigated.
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Prelude

As thinking, feeling, Human Beings, we cannot help but look around

at our world in wonder. Since the dawning of our collective consciousness

as “Mankind”, we have posed the questions “How?” and “Why?”. Ever

representative of the mysteries of existence were the heavens above, the

realms of the gods, the untouchable firmament. Our fragile planet has often

been described as the cradle of our developing humanity, in which we came

to consciousness, and first opened our eyes. Our deepest questions about our

and our Universe’s origins attempt to describe the beginnings of everything,

our conception and birth.

It has taken many thousands of years of conjecture, experiment and

observation for us to finally come home, to finally realise that our fragile,

living, breathing bodies are wrought from materials originating out in the

stars; that the very life-sustaining blood for so long representative of our

biological humanity and mortality is built from almost indestructible iron

forged deep in the heart of the gargantuan furnaces of supernovae. By our

very nature we are made of the stuff of gods. If the Earth is our cradle, then

the stars are the wombs from which we were born.
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Chapter 1

Introduction

1.1 Nuclear astrophysics

Nuclear Astrophysics is the study of the nuclear processes which drive the

birth, evolution and death of stars. Our current cosmological belief is that

the nuclei which make up the majority of matter were first made from nucle-

ons created a short time after the beginning of the Universe, in the expanding

fireball we call the Big-bang, and later forged in the interiors of stars and

stellar explosions.

It is of significant and enduring interest to Mankind to piece together

the picture of our evolution from the very first times. In particular, we now

know that almost all of the material from which our planet was created was

made in a vast series of nuclear reactions inside stars, and spread through-

out the interstellar medium via stellar outbursts and energetic explosions.

Astrophysicists have modeled these processes in the hope of explaining the

isotopic abundances we see today on our Earth, around the Solar system, in

1
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meteoric remains and in astronomical observations of other stellar systems

and the interstellar medium, in the hope of tying together a comprehensive

understanding of the series of events leading to our present condition. Also

of interest are the physical constraints placed on the energy generation and

lifetimes of stars resulting from the detailed study of the realm of nuclear

interactions, leading to predictive models and observational tools useful in

cosmology, the study of the large-scale evolution of the Universe.

In this thesis an experimental investigation of a method to enable the

measurement of a crucially important parameter in explosive stellar energy

generation is performed. Another experiment utilising cutting-edge radioac-

tive nuclear beam technology is also performed, enabling the study of nuclear

parameters significant in highly explosive nucleosynthesis scenarios. Thus

this thesis encompasses two of the main areas of Nuclear Astrophysics: en-

ergy generation and nucleosynthesis. New information on these parameters

is presented and the resultant implications discussed.

The remainder of this chapter will focus on a basic description of what

we know and don’t know in Nuclear Astrophysics, highlighting some nu-

clear parameters or reactions of importance. Chapter 2 outlines the theory

of nuclear reactions in the stellar environment and presents the R-Matrix

theory of nuclear reactions. Chapter 3 describes the investigation of an

experimental method to measure a parameter significant to the important

15O(α, γ)19Ne reaction, which is thought to be a breakout route from the

Carbon-Nitrogen-Oxygen cycles in types of hot stars. Chapter 4 outlines the

rapid-proton process important for nucleosynthesis in various stellar scenar-

ios and the 21Na(p,γ)22Mg reaction significant to it. Chapter 5 describes the

experimental procedure involved in the measurement of properties of states
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in 22Mg via 21Na+p elastic scattering using a newly developed radioactive

beam facility. Chapter 6 and 7 are concerned with the methods of analy-

sis and conclusions drawn from this analysis, leaving chapter 8 as a short

summary and proposal of possible future work.

We continue now, however, with a description of nucleosynthesis in

the Universe beginning with the formation of nucleons and nuclei after the

Big-bang.

1.2 Formation of the first nuclei

We begin our summary of the standard Big-bang cosmological model at

t = 10−45s. At this extremely short time after the Big-bang, the Universe

is a ferocious high energy substance seething with particles and radiation,

annihilating and popping into existence continuously. The Universe is ex-

panding rapidly, and the forces of nature which are thought to act are gravity

and the unified form of the strong-electroweak force, if indeed this does ex-

ist1. Small-scale quantum fluctuations become the beginning of what will

eventually end up as the large-scale structure seen in our present day Uni-

verse due to what is termed the inflationary era, where the rate of expansion

accelerates exponentially (see figure 1.1).

As the Universe expands the strong-nuclear and electroweak forces de-

couple from each other, and eventually the weak and electromagnetic forces.

This is the Hadron era, where matter is created and annihilated in a sea

of radiation. Here the nucleons and their antiparticles are created via the

1Before this time gravity needs to be described by a quantum theory, and is thought to
perhaps unify with the other forces at the extremely high energies involved in this regime
[1].
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Figure 1.1: Schematic of the evolution of the Universe. The time axis starts
with the Big-bang at the left and ends at the present on the right. [1].

equilibrium processes:

γ + γ ←→ p + p̄

γ + γ ←→ n + n̄

At this point, there are thought to be almost as many antiparticles as

particles, and almost equal numbers of protons as neutrons. As the Universe

cools further, the apparent baryon-antibaryon symmetry is broken in a spate

of annihilations, leaving the excess of baryons of which our Universe is mostly

composed today [3].

The proton-neutron balance is tipped towards favouring protons as

the mass difference between the two particles becomes similar to the ener-

gies available to the particles for reactions. This begins to occur at around

T = 1011 K, or t = 0.01s after the Big-bang. As the temperature drops be-

low around T = 9× 109 K, the electron neutrino “decouples”, and electron-
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Figure 1.2: COBE image of the cosmic microwave background, the last scattering
surface left over from the matter-radiation decoupling era [2].

positron annihilation increases [8]. This effectively freezes out the neutron

fraction at χn = n/p ' 1/6, leaving beta-decay as the only remaining neu-

tron removal process. At T = 109 K nucleosynthesis is sustained with the

series of reactions

p + n→ d + γ

d + d→ 3He + n

3He + n→ t + p

d + d→ t + p

t + d→ 4He + n

with the net result that a quarter of the nucleosynthesised mass is

made up from α-particles. The binding energy of the deuteron is low, and
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so in a hotter earlier Universe it tends to be destroyed quickly, which is

why this series of nucleosynthesis reactions can be sustained now. With the

freshly created 4He, reactions can create the isotopes 7Li, and 7Be (which will

decay to 7Li). This sets the limits of the products of primeval nucleosynthe-

sis, making 7Li the heaviest primordial isotope produced in any significant

quantity. Part of the reason no other species are produced is the mass gaps

at A=5 and A=8 where no stable nuclear configurations exist. However,

other isotopes in the mass region up to A=8 are thought to be synthesised

via a spallation process in the later Universe involving energetic cosmic rays

[3].

As further cooling ensues, the recombination of electrons into atomic

nuclei occurs and radiation and matter decouple. The Universe then evolves

into the matter-dominated era2. This is the era which has left its signature

in the cosmic microwave background we observe today (see figure 1.2). The

structure which began as pre-inflationary fluctuations now comes into play as

gravity, the weakest force, becomes important. This allows the galaxies and

stars to form, bringing the Universe into the age of stellar nucleosynthesis.

1.3 Star birth

Giant Molecular Clouds containing hydrogen and helium exist in the inter-

stellar medium. The cores of the most dense parts of these clouds tend to

be cold (≈10 K) [1], and any heating would arise mostly from neighbouring

stars within the region. The gravitational collapse of these clouds can be

initiated by supernovae shock waves or by the density increase caused in

2The matter density becomes larger than the radiation density.
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spiral galaxy arms [9]. Various factors can impede collapse, including the

centrifugal force caused by rotation [1], however, once collapse is underway

the region starts to heat up due to the conversion of gravitational potential

energy into thermal (kinetic) energy. Most of the heat that is generated is

lost quickly through radiation, but once the cloud has become dense enough

that it becomes opaque to radiation it begins to heat up quickly, usually

settling into a period of slow contraction [10].

The now protostar continues to slowly contract until the central region

is hot enough and dense enough (≈ 106 K) for fusion reactions to take place,

with the release of a large amount of energy. The outward pressure exerted

by the hot core and radiation generated from it becomes enough to balance

the inward force of gravity, and collapse is halted. This brings the star onto a

stable period of nuclear burning and relative calm called the Main sequence,

which is the current evolutionary stage of our own Sun.

1.4 Main sequence nucleosynthesis

The first stars to exist in the Universe are termed population II stars. These

would be composed from the elements which had been created in the Big-

bang. To begin with, the star is mostly composed of hydrogen and helium,

with only trace amounts of heavier elements. Thermonuclear reactions begin

with the proton-proton chain (pp chain), of which there are three stages. The

pp-I chain is:

p + p −→ d + e+ + νe

d + p −→ 3He + γ
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3He + 3He −→ 4He + p + p

The pp-II chain is:

3He + 4He −→ 7Be + γ

7Be + e− −→ 7Li + νe

7Li + p −→ 4He + 4He

while the pp-III chain is:

p + 7Be −→ 8B + γ

8B −→ 8Be + e+ + νe

8Be −→ 4He + 4He

Of these three chains, the pp-I chain generates by far the most energy.

The net result of all three chains is the processing of hydrogen into helium.

This is the energy source of all main sequence stars. A star will continue

burning in this way until the hydrogen fuel in the core begins to run out.

When this happens, the star is forced to evolve in any of a number of ways,

depending on the star’s initial mass, which are described in the next section.

1.5 Evolving stars

As the hydrogen depletes in a Main sequence star, it is replaced in the core

by the product of the burning, helium. In most scenarios a thin shell of

hydrogen remains burning around the inner helium core, which has become
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isothermal. Due to the lack of thermal pressure as the hydrogen runs out,

the core begins to contract. The hydrogen shell is heated up a little more,

and the envelope of the star, which up until now has not been involved in

nuclear burning and so is mostly still hydrogen, begins to expand as it heats

[9]. This is the red giant phase of evolution. Depending on the mass of the

star, the evolution will now proceed in a number of ways.

In a one solar mass star (≈ 1.99× 1030 kg), the helium core contracts

until it becomes an electron degenerate gas. The core cannot contract further

once it has become degenerate, and the temperature has reached sufficient

levels to allow the helium burning process called the triple alpha reaction to

occur:

4He + 4He −→ 8Be + γ

8Be + 4He −→ 12C + γ

In a degenerate core, because the thermal conductivity is extremely

hioh, as soon as this reaction begins it propagates throughout the core very

rapidly, producing what is called the helium flash. The star now burns

helium in the core until it is exhausted, and a core contraction and envelope

expansion phase similar to that during the red giant phase recurs. However,

much of the stars outer envelope is thrown off during this phase as the

star loses mass in the planetary nebulae phase, eventually becoming a white

dwarf, an electron degenerate star composed mostly of carbon in which all

thermonuclear reactions have stopped. It will then proceed to cool slowly,

until it finally dies as a cold black dwarf.

A star of several solar masses becomes hot enough to keep the de-
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generacy from occurring in the core at the first red giant phase. Here, the

onset of the triple alpha process is slow, as no helium flash occurs. As the

helium is depleted and a carbon core formed, the star goes into the super-

giant phase. A succession of core ignition, core exhaustion, contraction and

reheating phases occur, burning the ashes of the previous burning stage,

until an onion-skin-like structure is reached. The heaviest product which

is synthesised in these stars again depends on the mass, but the absolute

endpoint is the synthesis of iron, as beyond this mass, all possible reactions

are endothermic, ie. consume energy.

1.6 Explosive scenarios

In order to explain the isotopic abundances we see around our Universe,

we must take into account explosive stellar scenarios. Two neutron-capture

processes, the slow (s) process and the rapid (r) process, are thought to

be responsible for the synthesis of the heavy elements beyond iron. The

s-process is a non-explosive process, while the r-process is thought to occur

only in explosive scenarios. The r-process is thought to be responsible for

the nucleosynthesis of the actinides, since these cannot be created via the

s-process.

1.6.1 Supernovae type II

The onion-skin picture of a massive evolved star at the end of its fuel burning

life leads us into the description of nucleosynthesis of neutron-rich matter.

Such a star forms a very dense core as heavier and heavier material is burned.

The core becomes degenerate and it is thought that silicon burning then
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recurs around an iron core. As more heavy material is deposited on the

core, electron degeneracy pressure is overcome and the core compresses until

stopped by the pressure exerted by neutron degenerate matter. At this point

the core is effectively a neutron star. Depending on how massive the star,

it is also possible that gravity could overcome neutron degeneracy pressure

and the star becomes a black-hole.

In the neutron core picture however, as material from the mid-layers of

the star fall onto the core, they meet with an impassible resistance because

of the incompressibility of the degenerate matter. Thus they experience a

“hammer-anvil” effect, where the infalling matter bounces of the solid core

causing an outward shock wave to rip through the star, blowing all the outer

material off the core and into the interstellar medium, leaving the neutron

star remnant characteristic of supernovae type II.

During the explosion, there is a large neutrino flux from the core,

and also a large flux of neutrons. In this neutron-rich environment, the

r- and s-processes can occur, synthesising massive neutron-rich matter via

a staggered radiative-capture-beta-decay path (figure 1.3). The s-process

can synthesise isotopes up to 209Bi [9]. It is thought that the r-process can

account for a large fraction of the nucleosynthesis of neutron-rich isotopes up

to the Uranium island. The r-process only occurs after collapse of the stars

because the density and neutron flux need to be extremely high. During the

r-process and s-process, all the nucleosynthesis is from the neutron rich side,

leaving the question of where the rare proton-rich stable isotopes which exist

in nature are created, for they are impossible to create via neutron processes

alone.

It is thought that supernovae type II, although responsible for the syn-
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Figure 1.3: The s-process and r-process neutron capture paths [3].
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thesis of most of the neutron rich isotopes and their distribution throughout

the galaxies, are not responsible for the proton-rich rare isotopes. For these

nuclides, a very high temperature hydrogen-rich environment would be re-

quired, leading into our consideration of stellar binary systems.

1.6.2 Binary systems

Novae

It is observed that up to 50% of stars in the Galaxy are part of binary

systems [11], where two stars orbit each other. If the stars are of different

mass, usually one of them evolves quicker than the other (normally the more

massive the star, the faster it evolves because of its rate of fuel consump-

tion and greater temperature). Because of the centrifugal forces involved in

the orbit, the Lagrangian point which normally exists between two massive

bodies, where the gravitational pull of each cancels the other out, becomes a

pair of extended equipotential surfaces termed Roche lobes. When one star

evolves such that it is in a stage of expansion, its envelope can fill the Roche

lobe where, because of the equal gravitational pull, it can be transferred into

the Roche lobe of the smaller star, being captured by its gravitational field

and forming an accretion disk around the star. The hydrogen-rich material

gradually falls onto the smaller star, forcing it to evolve, until it expands

and fills its lobe, transferring material back to the first star. Transfers like

this can happen several times until one star becomes a white dwarf.

When the white dwarf’s companion eventually expands and material is

accreted, we have a situation where hydrogen is deposited on the degenerate

surface of the white dwarf in a strong gravitational field. The hydrogen itself
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Figure 1.4: Artist’s impression of an accreting white dwarf binary system.
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becomes degenerate, allowing the temperature to rise without the envelope

expanding. Thermonuclear reactions within the carbon-rich white dwarf

begin to take place through the Carbon-Nitrogen-Oxygen (CNO) cycles,

which will be detailed in the next section. Because the electron-degenerate

material cannot expand and cool while it is accreting onto the star, the

temperature rises until the degeneracy is suddenly lifted, causing a rapid

envelope expansion blowing material out into the interstellar medium. This

is a nova (new star), so called because of its sudden increase in luminosity

during this period.

During nova explosions, proton rich material can be synthesised if

the high temperature hydrogen burning CNO cycles can be broken out of,

allowing radiative proton-captures up to higher masses. The conditions for

the breakout of these cycles are the subject of much Nuclear Astrophysical

study, a point which will be discussed in section 1.7. Once synthesised, the

nova ejects the proton-rich material into the interstellar medium.

Supernovae type 1a

Under certain circumstances, an accreting white dwarf in a binary

system can reach a condition of thermonuclear instability, due to a large

accretion rate causing the star to exceed its Chandrasekhar limit3. When

this happens, as soon as ignition occurs, a massive thermonuclear explosion

blasts the entire star apart, in some cases taking the companion with it.

Although these explosions distribute material into the interstellar medium,

it is composed mostly of the light elements up to iron. Supernovae type

1a are not thought to be important contributors to nucleosynthesis beyond

3The Chandrasekhar limit is 1.4 solar masses.
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iron.

X-ray binaries

Under certain conditions, binary systems may evolve to the point

where, instead of becoming a white dwarf, one of the stars becomes a neutron

star. Again, a process of accretion occurs where hydrogen-rich matter falls

in towards the neutron star. In such a strong gravitational field, strong X-

ray fluxes are generated by the infalling matter, providing the observational

X-ray signature of these systems. As material accumulates on the surface

of the star, becoming degenerate as in a nova, it can heat to extreme tem-

peratures before degeneracy is lifted. When degeneracy is lifted, the outer

layers can explode, similar to a nova. However it is not known whether or

not the explosion is powerful enough to throw off the outer layers into the

interstellar medium due to the the large gravitational pull of the neutron

star. These explosions are characterised by bursts of intense X-ray activity

leading to the phenomena being known as X-ray bursters.

Since temperatures in X-ray bursters are extremely high, proton-capture

nucleosynthesis can proceed at a faster rate, where reactions unimportant in

novae can contribute significantly to the production of proton-rich isotopes.

1.7 Hydrogen burning

1.7.1 CNO cycle

In hot enough hydrogen-rich environments, the CNO cycle is the main energy

production mechanism. The CNO cycle becomes active in stars at temper-

atures in excess of around 107 K. An initial amount of 12C is required, and
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a hydrogen-rich environment.

The Carbon-Nitrogen-Oxygen cycle begins with the radiative proton

capture on 12C. The cycle then proceeds via a series of proton-captures and

β-decays:

12C(p, γ)13N(β+νe)
13C(p, γ)14N(p, γ)15O(β+νe)

15N(p, α)12C

The result of this process is the conversion of four protons into a helium

nucleus, with the release of energy. The carbon, nitrogen and oxygen nuclei

are used as catalysts, their relative abundances remaining unchanged during

the process.

1.7.2 The hot CNO cycles

The longest-lived β-decay sections of the CNO cycles are termed waiting

points, because the cycle must wait at these points before proceeding further

if the probability of proton-capture instead of β-decay is still extremely low.

As temperatures rise, proton-captures become more probable in a way which

is dependent on the nuclear properties in the compound nucleus, a fact which

will be discussed in more detail at a later point in this work. Therefore, just

like the Carbon-Nitrogen cycle changes into the CNO cycle via the choice of

the path 14N(p,γ)15O instead of 14N(β+νe)
14C, the CNO cycle can proceed

into what is termed the hot CNO cycle, via the choice of the path 13N(p,γ)14O

at higher temperatures (0.2 ≤ T9 ≤ 0.4). The hot CNO cycle thus proceeds

as:
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12C(p, γ)13N(p, γ)14O(β+νe)
14N(p, γ)15O(β+νe)

15N(p, α)12C

The net conversion during this process is again the catalytic transfor-

mation of four protons into a helium nucleus.

A “hotter” CNO cycle also exists where the reaction 14O(α,p)17F links

into the cycle 14O(α,p)17F(p,γ)18Ne(β+νe)
18F(p,α)15O. This hotter cycle is

thought to occur above 0.4 GK [11].

The longest-lived isotopes (waiting points) in both the hot CNO cycles

are 14O (t1/2 = 70.6 s), 15O (t1/2 = 122.2 s) and 18Ne (t1/2 = 1.7 s). These

isotopes are therefore important in the consideration of nucleosynthesis be-

cause at the hotter temperatures of explosive scenarios, breakout of the hot

CNO cycles could occur via radiative proton or alpha capture reactions on

these nuclei, leading into a rapid proton-capture process forming proton-rich

isotopes.

1.8 Nuclear astrophysical goals

Currently, much research is being done into the reaction rates of various

nuclear processes in low energy stellar environments, such as burning in

Main sequence stars and red giants. Nuclear cross-sections are measured at

the lowest possible experimental energy, and then extrapolations made to

stellar energies, which tend to be lower still. An example of this would be the

12C(α,γ)16O reaction. Also subjects of active research are the higher energy

processes of hydrogen burning in the hot CNO cycles and their breakout.
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The breakout reactions 15O(α, γ)19Ne and 18Ne(α,p)21Na from the hot CNO

cycle are currently being paid much experimental attention, and the former

reaction is connected to part of this thesis. Of particular importance in

Nuclear Astrophysics however, is the study of the specifics of the rapid-

proton process. Questions which need to be answered are: What are the key

contributing reactions in the rp-process at various temperatures? What are

typical rp-process sites: does it occur in X-ray busters only, and if so does

the envelope escape into the interstellar medium providing a nucleosynthesis

source? Do rp-process reactions occur in novae, where we know the envelope

escapes? How much of the nucleosynthesis of proton-rich nuclei can be

accounted for by these rp-process scenarios?

One of the key reactions thought to be important to the rp-process

is the 21Na(p,γ)22Mg reaction, as it may provide a link from the Neon-

Sodium-Magnesium cycle to the rp-process path as well as influencing the

final abundances of certain isotopes in certain stellar scenarios. The latter

part of this work will focus on the study of the nucleus 22Mg relevant to this.



Chapter 2

Theory of Thermonuclear

Reactions in Stellar

Environments

In this chapter the basic equations needed to determine stellar reac-

tion rates are defined, with focus on the specific parameters important in

experimental determination of these rates. The R-Matrix theory needed to

fit resonant elastic scattering data obtained later in this thesis is outlined.

2.1 Thermonuclear reaction rates

2.1.1 Penetrating the barrier

In stellar environments, nuclear material is synthesised when two nuclei react

together to produce a new nuclear species. Thus particle a can react with

target particle X to form the product pair b and Y, where Y is the synthesized

20
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nucleus, and b can either be a product particle, an energetic γ-ray, or both.

In stellar nucleosynthesis models, reaction rates are required which

define the flow of nuclear material being synthesized. In order to derive an

expression for the reaction rate, the cross-section for the reaction at a given

energy must be known. Typical solar-type stellar temperatures of around

15 × 106 K correspond to energies of the order 1 keV, while supernovae

temperatures can be around 9× 109 K and correspond to energies of a few

hundred keV or more [3]. Coulomb barriers between light particles such as

protons and light nuclei are of the order of a few hundred keV to a few MeV.

The typical particle energies found in stellar environments are therefore too

low to overcome the mutual Coulomb repulsion between them in order to

react. However, particles may penetrate the Coulomb barrier through the

quantum tunneling phenomenon. This occurs with a characteristic energy

dependent probability, parameterised by the Penetrability, P`, given by

P` =
kr

F 2
` + G2

`

(2.1)

where k is the wavenumber, r is the separation between the two parti-

cles, and F` and G` are the regular and irregular solutions to the Coulomb

wavefunction for a given relative orbital angular momentum, `. At energies

much lower than the Coulomb barrier, the penetration can be approximated

[3] as

P0 ≈ exp (−2πη) (2.2)

where η is the Sommerfeld parameter given by η = Z1Z2e
2/~υ, where

Z1 and Z2 are the charges of the two particles and υ is their relative velocity.
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In this form the penetrability is known as the Gamow Factor.

The cross-section for the reaction varies directly with this penetrability

factor, as well as with an energy dependent geometrical factor π/k2 ∝ E−1

accounting for the de-Broglie wavelength of the particle, giving a general

variation of the cross-section as

σ(E) = E−1 exp (−2πη)S(E) (2.3)

The Astrophysical S-factor S(E) has been introduced to account for

all the specifically nuclear effects and properties which determine the reac-

tion probability. Since experiments at typical stellar energies are extremely

difficult due to the low cross-sections involved and the small signal-to-noise

ratio, S-factors are used to extrapolate experimental cross-sections measured

at higher energies down into the astrophysical regime. This is convenient due

to the slow, continuous variation of S(E) with energy when resonances are

not present, compared to the other cross-section factors, which vary rapidly

with energy.

2.1.2 Thermal stellar properties

The interiors of such stellar systems, comprising of hot nuclear plasma con-

taining different abundances of isotopes, are in dynamic thermal equilib-

rium, meaning that the velocity distribution of particles follows the Maxwell-

Boltzmann relation

φ(υ) = 4πυ2
( m

2πkT

)3/2

exp

(

−mυ2

2kT

)

(2.4)

In terms of energy, this can be written
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Figure 2.1: Functional form of Maxwell-Boltzmann energy distribution repre-
sentative of thermalised stellar interiors.

φ(υ) ∝ E exp (−E/kT ) (2.5)

The functional form of this equation can be seen in figure 2.1. The

value E = kT represents the energy at which any given particle has the

highest probability of being found in.

2.1.3 Reaction rates

The total reaction rate of a process a + X → b + Y in units of cm3s−1 is

given by

R = NaNX

∫

∞

0

φ(υ)υσ(υ)dυ (2.6)

where Na and NX are the number densities (cm−3) of particles a and X
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Figure 2.2: The Gamow Peak (shaded), resulting from convolution of the
Maxwell-Boltzmann distribution and the penetrability [3].

respectively. Thus the rate is a type of convolution of the velocity dependent

cross-section and the Maxwell-Boltzmann velocity distribution.

Using relevant velocity transformations, the reaction rate per particle

pair can be written in terms of energy as

< συ >=

(

8

πµ

)1/2
1

(kT )3/2

∫

∞

0

σ(E)E exp

(

− E

kT

)

dE (2.7)

where µ is the reduced mass of the particle pair. Inserting the expres-

sion for the cross-section of equation 2.3, this integral results in the distribu-

tion shown in figure 2.2. Since for non-resonant reactions the S-factor varies

smoothly with energy, the exponential penetrability term and the exponen-

tial Maxwell-Boltzmann term in the cross-section have the most influence on

the integral. The resulting form in figure 2.2 is called the Gamow Peak, and
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represents the region of energies for which the reaction is most probable.

2.1.4 Resonant reactions

The previously derived reaction rate expression relies on the smooth varia-

tion of the S-factor with energy for non-resonant (direct) reactions. However,

very often, resonant reactions can take place where the two nuclei a and X

can fuse together into an excited state of a Compound Nucleus, then decay

into the product particles b and Y . In this case, when the incident energy

is such that the wavefunctions of the incident particle and compound state

are well matched, the cross-section for reaction is greatly enhanced around

this energy, causing a large increase in the S-factor expression.

The cross-section for a resonance reaction is usually given by the Breit-

Wigner Lorentzian form

σBW (E) = ω
π

k2

ΓaΓb

(E − ER)2 + Γ2/4
(2.8)

the differential cross-section expression for ` = 0 is simply

dσBW (E)

dΩ
= ω

1

4k2

ΓaΓb

(E − ER)2 + Γ2/4
(2.9)

where ω is the spin-statistical factor ω = (2J+1)
(2I1+1)(2I2+1)

(1 + δ12). Γ is

the total width of the compound state, and is equivalent1 to the full-width

at half-maximum of the Lorentzian curve. The total width is the sum of the

partial widths for all open reaction channels Γ = Γa + Γb + ..., while ER is

the resonance energy, at which the reaction cross-section peaks.

1This is true in general for the simplified Breit-Wigner expression but may not be so
in other formalisms such as R-Matrix
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A narrow resonance, where typically Γ/ER ≤ 10%, has the specific

property of acting like a δ-function in the reaction rate integral of equation

2.7. The resulting reaction rate peaks sharply at the resonance energy of

that particular resonance.

When the integral of equation 2.7 is evaluated the functional form of

the reaction rate is given by the relationship

< συ >∝ T−3/2 exp

(

−ER

kT

)

ωγ (2.10)

where ωγ = ωΓaΓb/Γ is termed the resonance strength.

Low energy narrow resonances in nuclei where reaction particles are

well below the Coulomb barrier will tend to have a larger probability of

γ-decay than particle decay. In these cases, Γγ ≈ Γ and therefore the re-

action rate of the (p,γ) reaction into that state depends specifically on the

partial proton width Γp. The reverse can occur where the particle energy is

well above the Coulomb energy, where Γp will tend to be much larger than

Γγ, making Γγ the dominant factor in the reaction rate. This shows that

there are certain scenarios in Nuclear Astrophysics where measurement of

one resonance parameter can greatly enhance or definitively pin down the

knowledge of a reaction rate.

In the presence of several narrow resonances, the reaction rate simply

varies as the sum of the individual resonance contributions:

< συ >∝ T−3/2 ×
∑

i

∑

i

∑

i

(ωγ)i exp

(

− Ei

kT

)

(2.11)

So, in cases where reactions are dominated by the contributions of

several narrow resonances, a detailed knowledge of the resonances energies,
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total widths and partial widths are required in order to calculate the reaction

rate. It has been estimated that accuracies of around 20% or so are required

in Nuclear Astrophysical calculation in order to meet the limited sensitivity

of the models [12]. This work focuses on two specific cases where reaction

rates are dominated by narrow resonances, and attempts to measure or

deduce individual state properties relevant to these.

2.2 R-Matrix theory of compound nucleus

reactions

2.2.1 Reaction channels and the nuclear surface

The R-Matrix formalism is a parameterisation of the properties of compound

nucleus reactions. A compound nucleus reaction occurs when two nuclei a

and X fuse into an intermediate or compound nucleus, C, before decaying

into products b and Y. The compound nucleus is usually formed in an excited

state, and is normally unstable to particle decay since it was formed via a

particle mechanism in the entrance channel. Compound nuclei exist for

times much larger than the time it would take for an incident nucleon to

cross the nuclear dimensions of the target particle.

The formulation of R-Matrix theory begins with the idea of a nuclear

surface which defines the volume within which nucleons are considered part

of a compound nucleus. This is due to the short-range nature of the strong

nuclear force. The volume within this surface contains all the nucleons which

make up the compound nucleus, however, once any particles exist outside

this surface, they are considered separate entities. In the configuration space
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Figure 2.3: Schematic of the compound nucleus volume defined by the nuclear
surface, showing the different reaction channels possible for formation or decay of
the system for the example of 8Be∗. Adapted from [4].

of all the possible ways in which the compound nucleus can either be created

or decay, the regions outside the nuclear surface are referred to as distinct

reaction channels. Figure 2.3 shows a schematical representation of this in

the case of the compound nucleus 8Be∗.

In the region outside the nuclear surface, or the external region, the

nuclear forces between particles are extremely weak. Hence the only con-

tributing forces to the wavefunction properties of particles in the external

region are electromagnetic in nature; the Coulomb repulsion between two

like charges and the centrifugal force for particles at non-zero impact pa-

rameters. We can then proceed to construct a mathematical description

of the qualities of the wavefunctions in the internal and external regions

separately.
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We define the nuclear surface, the boundary between the internal and

external regions, as existing at a radius ac, the channel radius. Outside this

boundary, the particle system is described as a superposition of incoming

and outgoing waves. Since in the external region no nuclear interactions

are operating, the scattering qualities are completely described by factors

such as the Coulomb phase shift (which depends on the penetrability, and

therefore angular momentum, incident energy and channel radius).

The wavefunctions of the internal region are equated with excited

states of the compound nucleus. Because these states eventually decay, they

are quasi-stationary. However, a set of stationary states can be constructed

so that the derivative of the internal wavefunction and the wavefunction

itself are related by a constant at the channel radius [13].

The relationship between the wavefunctions at the nuclear surface al-

lows the total wavefunction to be constructed. It is this total wavefunction

which then relates the description of the reaction properties to the observed

cross-sections and angular distributions in reality.

2.2.2 Construction of external and internal wavefunc-

tions

It is useful at this point to use a simplified physical situation in order to

illustrate the derivation of the R-Matrix formalism, adding more complicated

aspects where necessary, before finally proceeding to define the core complete

equations of R-Matrix theory.

The following discussions follow mainly the formalism of refs. [14] and

[4], and centre on the discussion of the scattering of a spinless particle by a
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central potential V(r) to derive the basic equations relating the wavefunc-

tions and properties of the compound nucleus to the R-Matrix parameters.

For a spinless ` = 0 particle scattering from a central potential, we

may show the wavefunction of the internal region, Ψ, satisfies the radial

Schrödinger equation:

(

−~
2/2m

) d2Ψ

dr2
+ V (r)Ψ = EΨ (2.12)

However, in reality the nuclear states decay, and therefore do not have

well defined energies (are quasi-stationary). To proceed therefore, a complete

set of stationary states are constructed to represent the wavefunction:

Ψ =
∑

λ

AλXλ (2.13)

These stationary states satisfy the Hamiltonian HXλ = EλXλ, where

Eλ are identified as the energy eigenvalues of the system, with Xλ the eigen-

vectors. To make sure that these states relate directly to the actual quasi-

stationary states at the nuclear surface r=a, we introduce a boundary con-

stant, b, giving the boundary condition:

dXλ

dr
+ bXλ|r=a = 0 (2.14)

We then obtain by substitution and integration

(

−~
2/2m

)

(

Ψ
dXλ

dr
+ Xλ

dΨ

dr

)

r=a

= (E − Eλ)

∫ a

0

XλΨdr (2.15)

The relation Aλ =
∫ a

0
XλΨdr and eq. 2.14 can then be used to write
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Aλ =
(

−~
2/2m

)

Xλ(a)
Ψ′(a) + bΨ(a)

E − Eλ

(2.16)

We can now substitute this into the expression for Ψ(r) given by eq.

2.13 to get

Ψ(r) = G(r, a) (Ψ′(a) + bΨ(a)) (2.17)

where the Green’s function G(r,a) is given by

G(r, a) =
(

~
2/2m

)

∑

λ

Xλ(r)Xλ(a)

Eλ − E
(2.18)

Now the value of the wavefunction at r=a can be determined via the

definition of the R-function as the value of the Green’s function at r=a:

R ≡ G(a, a) =
(

~
2/2m

)

∑

λ

X2
λ(a)

Eλ − E
(2.19)

If we introduce a new set of parameters γλ such that γ2
λ = (~2/2m)|Xλ|2,

then the R-function is written

R =
∑

λ

γ2
λ

Eλ − E
(2.20)

The R-function then relates the internal stationary parameters such as

the wavefunctions and eigenenergies to the total wavefunction at the nuclear

surface Ψ(a), going some way to enable the description of the system.

The logarithmic derivative of the wavefunction is given by

Ψ′(a)/Ψ(a) = (1− bR)/R (2.21)
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Knowing the logarithmic derivative of the wavefunction at one point

(r=a) for all energies is equivalent to knowing the cross-section for all ener-

gies [4].

In the external region the total wavefunction can then be written as a

superposition of the incident and outgoing waves, I and O, in the form

Φ` = I` − U`O` (2.22)

where U` is the collision function, and we have included the index

` to denote the incident orbital angular momentum of the system. The

incident and outgoing waves are related to the regular and irregular Coulomb

functions F` and G` by

I` = (G` − iF`) exp(iω`) (2.23)

O` = (G` + iF`) exp(−iω`) (2.24)

Here, ω` is the Coulomb phase shift, and is given by ω` =
∑`

n=1 tan−1(η`/n).

Manipulation of incident and outgoing wave equations of unit flux

and use of equation 2.22 allow the construction of the nuclear scattering

amplitude:

A(θ) =
1

2
ik−1

∑

`

(2` + 1)(1− U`)P`(cos θ) (2.25)

The differential cross-section is then given by

dσ(θ)

dΩ
= |A(θ)|2 =

1

4
k−2

∣

∣

∣

∣

∣

∑

`

(2` + 1)(1− U`)P`(cos θ)

∣

∣

∣

∣

∣

2

(2.26)
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The collision function U` is related to the R-function and therefore

the stationary state qualities by equating the logarithmic derivatives of the

internal and external wavefunctions at r=a. This allows U` to be expressed

in terms of a phase shift, δ`, as

U` = exp(2iδ`) (2.27)

where2

δ` = tan−1 [R`P`/(1−R`S`)]− φ` (2.28)

Here, φ`,P` and S` are the hard-sphere phase shift, penetrability and

energy shift function, respectively, and are given by

φ` = tan−1(F`/G`) (2.29)

P` = kr/(F 2
` + G2

`)|r=a (2.30)

S` = P`(F`F
′

` + G`G
′

`) (2.31)

From this point, we have an expression for the differential cross-section

which depends on the collision function which in turn depends on the phase

shifts associated with Coulomb scattering (ω`), hard-sphere scattering (φ`),

and reaction scattering (R-function). All the information about the station-

ary states is contained within the R-function, and these states are related

to the physical reality by the boundary constant, b, which will be discussed

in more detail later.

2The boundary constant, b, has been set to zero in this example.
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2.2.3 Multi-channel matrix representation

To extend the above formalism of the R-function to the case where many

reaction channels are open and many combinations of spin can contribute to

the formation of states of different spin-parity, we introduce matrix notation

and a corresponding set of indices. The indices are the set c = {αsν`m}.

These denote channel, channel spin, channel spin component, orbital angular

momentum, and orbital angular momentum component, respectively. The

fact that they are grouped together under the index c represents the fact

that each reaction channel is uniquely defined by a certain combination of

values of these indices. In this representation, the R-function becomes the

R-Matrix, whose elements are constructed by

Rcc′ =
∑

λ

γλc′γλc

Eλ − E
(2.32)

where the unprimed and primed indices denote values in the entrance

and exit channels respectively. The collision function becomes the collision

matrix, and is related to the R-Matrix as [15]

Ucc′ = (kcrc)
1/2O−1

c (1−RL)−1(1−RL∗)Ic′(kc′rc′)−1/2 (2.33)

Here, the diagonal matrix Lc is given by Lc ≡ Sc−Bc + iPc, where Bc

is the matrix form of the boundary constant.

The expression for the differential cross-section of a process α→ α′ as

derived in ref. [14] is not stated here but in Appendix B. Instead next we

discuss the meaning of various aspects of the R-Matrix formalism and its
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application to real physical scenarios.

2.2.4 Formal and observed parameters

Because discrete states exist in the compound nucleus, the cross-section is

enhanced when the incident wavefunction matches the internal wavefunc-

tion, ie. when the energy of the incident particle is closely matched to that

of the physical state. This appears as a resonance in the cross-section, whose

resonant energy corresponds to the physical energy of the compound nuclear

state. A resonance has associated with it a strength and a width, for which

the important parameters are the Γ widths defined in section 2.1.4. These

widths are the physical reality of the strength of the resonance; no matter

what formalism is used, the experimental data will always show a partic-

ular resonance has a certain strength and width corresponding to the real

physical properties of the compound nuclear configuration. In contrast, the

parameters in the R-Matrix which directly influence the strength of the reso-

nant cross-section, the γλc, are identified only as eigenstates of the stationary

wavefunctions used to describe the internal region of the compound nucleus.

In the R-Matrix formalism, the external and internal contributions

combine in such a way as to make the collision matrix, and therefore the

cross-sections, independent of the choice of channel radius or boundary con-

dition. Thus the final cross-section over a resonance can be described as

having an observed experimental width, which is the physical reality of the

situation, and is related to the internal eigenstate parameter γλc via the chan-

nel radius and boundary condition. This is the sense in which R-Matrix is

phenomenological in approach. It describes the observed cross-section in
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terms of parameters Γ analogous to Breit-Wigner widths, without giving

any information about the real wavefunctions of the compound nucleus.

The γλc parameters are termed the reduced widths and have units of
√

E. Widths with units of energy can be made from them via the relation

Γ̃λc(E) = 2Pc(E)γ2
λc (2.34)

this is the formal width of the resonance. The definition of resonance

energy is that when the state energy Eλ is such that the boundary condition

is equal to the shift function, then the pole energy and resonance energy are

equivalent. This leads to the definition of the observed width as

Γo
λc(E) = 2Pc(E)γ2

λc/(1 + γ2
λcS

′(E)|E=ER
) (2.35)

The observed widths are the parameters which are important for astro-

physical calculations, and so once a choice of channel radius and boundary

condition have been made, and experimental data fitted, steps need to be

taken to extract the observed widths and resonance energies from the pa-

rameters Eλ and γ2
λc. The method for doing this is described in chapter

7.

If knowledge is required about the nuclear wavefunctions of the com-

pound nucleus, then the channel radius has to be set to a value which closely

resembles the true physical radius of the potential. If the boundary condition

is set equal to the shift function at the pole energy, then the correspond-

ing set of formal reduced widths more closely emulate real properties of the

wavefunctions. They can then be compared to quantities such as the Wigner

limit, which will be discussed in chapter 7, in order to predict nuclear struc-
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ture aspects of the state.

The R-Matrix provides a complete description of scattering cross-

sections of resonant reactions in cases where one or more nuclear states

can be formed in the compound nucleus via a variety of different mecha-

nisms. One point which R-Matrix theory takes into account which a simple

Breit-Wigner resonance does not, is that neighbouring resonances can in-

terfere with each other leading to phase shift modification. However, for

the single-level, single-channel, spin-zero case, the R-Matrix representation

reduces to the simple Breit-Wigner equation.

Not taken into account in the R-Matrix theory in this representation

are the effects of negative energy channels (sub-threshold resonances), γ-ray

emission or excitation, or direct reaction contributions. However, for the

particular case in which we wish to apply R-Matrix theory in this work,

these effects are either thought to be extremely small or non-existent.

Later in this thesis, the core aspects of R-Matrix theory are modified

to be used to fit experimental data of nuclear scattering for an astrophysi-

cally important scenario, leading to measurements of the nuclear parameters

involved.



Chapter 3

The Lifetime of the 4.033 MeV

State of 19Ne

This chapter covers the design and implementation of a test experi-

ment to determine the feasibility of measurement of the lifetime of the 4.033

MeV state of 19Ne, which is of considerable importance to the breakout of

the hot-CNO cycle via the 15O(α, γ)19Ne reaction.

3.1 The role of the 15O(α, γ)19Ne reaction in

the breakout of the hot-CNO cycle

3.1.1 The importance of breakout

In stellar environments with temperatures in excess of 0.2 GK, such as in

O-Ne-Mg Novae, the hot-CNO cycle dominates energy generation over other

reaction chains. As long as the hot CNO cycle remains unbroken, the net

result will always be the catalytic transformation of hydrogen into helium,

38
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with the isotopic abundances of the catalysts carbon, nitrogen and oxygen re-

maining in equilibrium. It is of considerable interest in Nuclear Astrophysics

to determine the routes by which the hot CNO cycle might be broken in cer-

tain stellar scenarios, because the beginning of the rapid proton process is

reached in this way, resulting in heavy element generation up to as far as

68Se or possibly higher, such as Te [16].

To break the hot CNO cycle, a reaction between either hydrogen or

helium, and the CNO catalyst is required which will take the reaction path

up to heavier isotopes before the majority of the catalyst isotopes can β+

decay back into the cycle. Since such a reaction has to essentially compete

with β+ decay for breakout, it is the longest lived proton-rich isotopes in

the cycle which are important; the so-called waiting points. The longer the

lifetime of the radioactive isotope, the more chance it has of reaction with

either hydrogen or helium.

In the hot-CNO cycle sequence:

12C(p,γ)13N(p,γ)14O(β+)14N(p,γ)15O(β+)15N(p,α)12C

the waiting points are the 14O and 15O radioactive isotopes, both

proton-rich. A proton-capture on 14O is forbidden since 15F has a proton

decay width of about 1 MeV. However, the nature of states in 18Ne ( i.e. 14O

+ α ) above the α-threshold means that the 14O(α,p)17F reaction becomes

possible at around 0.4 GK. This links to the next part of the hot-CNO cy-

cle path, and consequently 18Ne and 18F are brought into the cycle via the

chain:

14O(α,p)17F(p,γ)18Ne(β+)18F
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where 18Ne is now also a waiting point of the cycle due to its reasonably

long lifetime (1.7 s).

If the proton-capture reaction 18F(p,γ) were favourable, then 19Ne

would be formed. This would then β+-decay to 19F and a subsequent proton-

capture would take it to stable 20Ne, hence the cycle would be broken. This

is actually not the case, as the states in 19Ne which are formed are above the

α-threshold, allowing the 18F(p,α)15O reaction to occur, a fact which is not

usually the case for Zeven-1,N=Zeven-1 nuclei below cesium [17], and so the

cycle is taken back to one of its waiting points. Proton-capture on 15O is hin-

dered in the same way as on 14O, and this leaves the waiting point 18Ne(β+).

The proton-rich nucleus 19Na is very likely to proton decay compared with

its γ-decay, so that the reaction 18Ne(p,γ)19Na does not compete.

3.1.2 The breakout route 15O(α, γ)19Ne

Since all conceivable proton-capture routes out of the hot-CNO cycle are ei-

ther impossible or unlikely, only α-induced reactions are possible instigators

of breakout, helium being the next most abundant fuel to hydrogen. The two

possible waiting-point nuclei α-capture reactions are then 15O(α, γ)19Ne and

18Ne(α,p)21Na. The 18Ne(α,p)21Na reaction relies first on the 14O(α,p)17F

link to the second part of the hot-CNO cycle, and then requires temperatures

in excess of 0.6 GK to become important [18], but at lower temperatures,

the 15O(α, γ)19Ne is thought to dominate the breakout path. This reaction

in particular is important in a number of ways. Firstly, the reaction will

lead to a proton-capture on 19Ne and consequently 20Na will be formed, β-

decaying to 20Ne. This is stable, and from this point, there is absolutely no
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way that the seed nuclei can be taken back into the CNO cycle, with the

result that heavier isotopes above mass 20 are the main products of explo-

sive hydrogen burning. Secondly, the energy generation of the rapid-proton

process above mass 20 is thought to exceed that of the HCNO cycle by a

factor of one hundred [5] under certain conditions. This has consequences

for the modeling of hot stellar scenarios.

3.2 The structure of 19Ne relevant to the

15O(α, γ)19Ne reaction rate

3.2.1 The states in 19Ne of Astrophysical interest

The α-particle threshold in 19Ne corresponds to an excitation energy of 3.529

MeV, therefore, the structure of 19Ne around this energy determines the low

temperature reaction rate of 15O(α, γ)19Ne. It is thought that the direct

reaction mechanism does not contribute significantly to this reaction rate

[19], and that the reaction proceeds by the contribution of resonances cor-

responding to the states above α-threshold in 19Ne.

The structure of 19Ne above the α-threshold has been studied using

many methods over the years. Initially, evidence for states at Ex=3.841

MeV and Ex=4.013 MeV was found using the reaction 20Ne(3He,4He)19Ne

[20], while a restudy using the reaction 17O(3He,n)19Ne also found evidence

for a state at 4.01 MeV, and a state at 3.7 MeV although the existence of

the latter was uncertain [21]. A further study again using the 20Ne+3He

transfer reaction [6] measured the first state above threshold as 4.036 MeV,

as the experiment failed to yield any evidence for a state below this value,
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even though the experiment was performed at a higher bombarding energy

than the previous 20Ne+3He study.

Other states considered to be the major contributors to the 15O(α, γ)19Ne

reaction under astrophysical conditions are the levels at Ex = 4.379 MeV,

4.549 MeV, 4.600 MeV, 4.712 MeV and 5.092 MeV. These have resonance

strengths, ωγ, ranging between ∼ 5 meV and ∼ 200 meV [5]. However,

the first state above threshold mentioned previously is considered the most

important state under low-temperature astrophysical conditions, for reasons

that will be explained in the next section. The following part of this work

will concentrate on this state.

3.2.2 Properties of the 4.033 MeV state in 19Ne

A spin-parity assignment of 3/2+ was given to the 4.036 MeV state as a re-

sult of DWBA fits in the 20Ne(3He,4He)19Ne experiment [6], and this low spin

means that the 15O(α, γ)19Ne reaction could occur with significant strength

via a low orbital angular momentum α-capture to this state1 since the res-

onant energy is low. The state energy has been remeasured as 4032.9 ±

4 keV in an experiment using the reaction19F(3He,t)19Ne [5]. This energy

corresponds to a centre-of-mass energy of 0.504 MeV in the 15O+α sys-

tem, and this resonance would dominate the reaction rate below 0.7 GK

[5]. Ideally the reaction rate should be measured experimentally, but due

to the extremely small cross-section of the reaction, the direct measurement

is difficult. Good quality radioactive 15O beams are still under develop-

ment, as are the experimental facilities, such as recoil separators, needed to

1The reaction pair 15O (Jπ= 1

2

−

) + α (Jπ=0+) can proceed to a 19Ne ( 3

2

+
) state via

` = 1 capture
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Figure 3.1: Reaction rates for the 15O(α, γ)19Ne reaction as calculated in ref.
[5], showing the contribution of individual resonances.
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perform this direct measurement [22]. The cross-section is thought to be

extremely small for this resonance due to the magnitude of the α-branching

ratio Γα/Γtot, which is thought to be of the order 10−4 based on the equiva-

lent resonant state properties in the mirror nucleus 19F (measurement made

on 15N(α, γ)19F resonance strengths) [23]. Current reaction rate estimates

for the 15O(α, γ)19Ne(4.033) resonance are usually based on this analogue

assignment [5] although several experiments have attempted to measure this

rate indirectly, the methodology of which will be discussed in the next sec-

tion.

3.3 Indirect measurement of the

15O(α, γ)19Ne(4.033) reaction rate

3.3.1 Systematics of the reaction rate

The expression for the resonant reaction rate given by equation 2.10 contains

the resonance strength ωγ, which for the 15O(α, γ)19Ne reaction will be given

by:

ωγ = ω × ΓαΓγ

Γtot

Because Γα is thought to be much smaller than Γγ, the approximation

Γtot ≈ Γγ can be made, and therefore the reaction rate will vary directly as

Γα. Thus a measurement of Γα can be used to estimate the reaction rate,

regardless of the absolute value of Γtot. This has the implication that any

measurement of both the α-branching ratio and the γ-decay width will yield
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a number which can be used to directly estimate the reaction rate.

3.3.2 Measurement of the α-branching ratio

The α-branching ratio can be written as Γα/Γγ using the approximation

above, and so can be measured by using a reaction to populate the relevant

state in 19Ne and detecting coincident 15O recoils and ejected α-particles as

a ratio to the total excitation of the 4.033 MeV state in 19Ne nuclei. The

ratio between these populations, folded in with the experimental efficiency,

will give the branching ratio2, Γα/Γγ . The problems in measuring this ratio

relate to finding a suitable populating reaction with a high yield of the 4.033

MeV state, and having sensitive enough experimental setups to efficiently

detect the decay products 15O and α.

Several experiments have been proposed or tested to measure this

branching ratio using a variety of different populating reactions, for example

the 18Ne(d,p)19Ne reaction [24][25], the 20Ne(3He,4He)19Ne reaction [26], and

the 9Be(18Ne,2α)19Ne reaction [27]. The first experimental constraints have

been put on this branching ratio recently as Γα/Γγ ≤ 5× 10−4 [26].

3.3.3 Measurement of the γ-decay width

Although much attention has been paid to measurement of the branching

ratio, less has been paid to the γ-decay width although there are and have

been attempts at measurement of this parameter [28].

2Each 19Ne nucleus detected has proceeded via γ-decay of the 4.033 MeV state (the
kinematics of the 19Ne will tag the excited state) while the pair of 15O and α nuclei will
have proceeded via α-decay of the state (again with their kinematics tagging the state),
so that the experimental ratio measured is actually Γα/Γγ
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It is important that the lifetime of the state (related to the γ-decay

width by τ = ~/Γγ) be measured explicitly, via an independent experimental

method, so that the value can be combined with data from branching ratio

experiments in order to yield a good solid estimate of the α-width of the

state.

3.4 Design of a lifetime measurement exper-

iment for the 4.033 MeV state in 19Ne

3.4.1 The Doppler-shift attenuation method

The estimated γ-width of the 4.033 MeV state in 19Ne is 73±41 meV [5],

based on measurements of the analogue 3/2+ state at 3.907 MeV in 19F

[29][30]. This corresponds to a mean lifetime of around 9 femtoseconds.

The usual method for measurement of such small γ-ray lifetimes is the

Doppler Shift Attenuation Method (DSAM). It is based around the

premise that the energy of a γ-ray measured in the lab will be Doppler-shifted

depending on the lab velocity of the excited nucleus which has emitted it.

A full description of the method is described in Appendix A.

In this experiment, it was chosen to use an implanted target method

where a range of different stopping materials are implanted with a thin layer

of target material. The beam reacts with the target material producing

the required recoil, which decays in the stopping material whilst decelerat-

ing, leading to a measurement of the mean lifetime via the analysis of the

Doppler-shifted γ-ray lineshapes as described in Appendix A. In this par-

ticular case we chose to use the centroid method, where the centroids of the
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Doppler-shifted γ-ray peaks from a range of different stopping materials give

a lifetime estimate using the relations described in Appendix A.

It has been found in previous investigations that the centroid method

of determining the lifetime is more accurate for small lifetimes. Experiments

using the centroid method over different stopping materials have successfully

measured fast lifetimes of 2.2 fs with around 30% error [31].

3.4.2 The 3He(20Ne,4He)19Ne reaction

In order to design an experiment utilising the implanted target technique

mentioned above, it is necessary to determine a suitable populating reaction

for the nuclear state of interest. The 20Ne(3He,4He)19Ne reaction has been

studied in ref. [6], using a 3He beam at incident energy 15 MeV on a win-

dowless gas cell containing 20Ne. Angular distributions between 0◦ and 90◦

in the centre-of-mass were measured for states in 19Ne up to Ex=7.064 MeV.

To date this is the most thorough experimental cross-section data available

for this reaction. This introduces the possibility of the use of the inverse

kinematics reaction 3He(20Ne,4He)19Ne to populate the 4.033 MeV state in

19Ne. This would be an advantageous reaction to use because estimates on

the event rate can be made using the cross-section data, and the high recoil

velocities involved in an inverse kinematics reaction are suited to a DSAM

measurement. The target nucleus 3He is gaseous at S.T.P, and therefore

would be suited to implantation in a range of stopping materials, in analogy

to the implantation of 4He into metals in the DSAM experiments in refs.

[32] [33]. It was decided to utilise this reaction for the DSAM experiment of

the 4.033 MeV state lifetime.
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Figure 3.2: The differential cross section (centre-of-mass) for the 4.033 MeV
state of 19Ne in the reaction 20Ne(3He,4He)19Ne. Taken from ref. [6]. The solid
and dashed lines show DWBA fits for Jπ = 3/2+, 5/2+ respectively.

The 15 MeV 3He beam energy corresponds to a centre-of-mass energy

in the 20Ne+3He frame of ∼13.03 MeV, which translates into an inverse

kinematics 20Ne beam energy of ∼100 MeV. The differential cross-section of

the 20Ne(3He,4He)19Ne(4.033) reaction at θcm = 0◦ is≈0.4 mb/sr and falls off

rapidly with increasing angle. The DWBA fits to the experimental data in

ref. [6] suggest that the reaction is a direct process due to the characteristic

maxima and minima in the angular distribution. Although no angular data

exist for the region θcm ≥ 90◦, the data may be extrapolated to θcm = 180◦

to estimate the value of the differential cross-section at forward lab angles

in inverse kinematics.

Figure 3.2 shows the differential cross-section between 0◦ and 90◦ in

the centre-of-mass system for the 4.033 MeV state as measured in ref. [6].

When we transform into the inverse kinematics frame, there is an inversion
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of the z-axis, ie. the direction of the beam. This transforms the angles of

the scattered particles by the relation

θCM,I = 180◦ − θCM,N (3.1)

where θCM,I and θCM,N are the angles of the scattered particles in

inverse and normal kinematics reactions respectively.

An inverse kinematics reaction also provides us with an essential fea-

ture for the Doppler Shift Attenuation Method: a fast recoil velocity. This

means that the recoiling excited 19Ne nucleus travels a large distance in the

stopping material before it decays. The decceleration in the stopping ma-

terial will therefore be significant, giving a Doppler shift attenuation large

enough to measure. It has been reported in ref. [33] that for heavy-ion

reactions which involve recoil velocities with β ≈ 0.03, lifetimes can be mea-

sured with sensitivities of around 1 fs. A recoil 19Ne nucleus at θlab = 0◦

from the equivalent inverse reaction to that used in ref. [6] (20Ne beam en-

ergy of 100 MeV) would have a recoil velocity of around β ≈ 0.07, which

would be less efficient than the velocities mentioned above because although

a large distance is travelled in a short time, the stopping power will be less

because of the high energy. However the main reason for this being too high

a beam energy is the fact that there may be γ-ray contamination from a

fusion-evaporation background caused by reactions on the stopping mate-

rial. Because it was decided that the centroid method was to be used to

measure the lifetime over a number of stopping materials, the beam energy

of the reaction had to be chosen carefully so as to minimise the background

from fusion on the stopping materials, yet have a suitable recoil velocity for
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the DSAM measurement, and suitable centre-of-mass energy for the forma-

tion of the state of interest. The DSAM experiment of ref. [31] used foils of

Magnesium, Aluminium, Tantalum and Gold as its stopping media. How-

ever, the beam energies used were only 1.657 and 1.663 MeV/nucleon which

were deemed suitable for the formation of the state of interest at 1.04 MeV.

Since our study involves an excited state energy of 4.033 MeV, the centre-of-

mass energy of the reaction needs to be high enough to form this state. The

threshold beam energy for the reaction 20Ne(3He,4He)19Ne(4.033) is 2.439

MeV, ie. this reaction is energetically possible for all beam energies above

this value. However, we must also ensure that the centre-of-mass energy of

the reaction is above the Coulomb barrier for the system 20Ne + 3He. Using

the simple Coulomb equation for the size of the Coulomb potential barrier:

VC = 1.44
Z1Z2

rn(A
1/3
1 + A

1/3
2 )

(3.2)

where rn is the nuclear radius (≈ 1.22 fm), the barrier for 20Ne + 3He

is roughly 5.7 MeV. Therefore a 20Ne beam energy greater than 43.48 MeV

would be above the barrier. The Coulomb barriers for the materials used

in the experiment of ref. [31] are tabulated in table 3.1, along with various

other metals. It can be seen from the table that a beam energy of 100 MeV

would rule out the use of some of these metals in the experiment because

fusion reactions on the stopping material would occur. However, a beam

energy of 50 MeV would only rule out the use of Magnesium and Aluminium

whilst being above the Coulomb barrier for 20Ne + 3He. A recoiling 19Ne

nucleus from the reaction at 0◦ would have a velocity β ≈ 0.05, more like

the velocities used in the study of ref. [31]. A 50 MeV beam energy was
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then chosen to be used in the experiment.

A suitable set of stopping materials had to be chosen for the experi-

ment. Gold and Tantalum were considered as in refs. [31] [32], as also was

Nickel, used in ref. [32]. In addition, Tin and Tungsten were also consid-

ered. Table 3.2 shows the stopping powers and some elemental properties for

these materials for an incident 50 MeV 20Ne beam. 50 MeV incident energy

is substantially below the Coulomb barrier for all these materials. A large

range of stopping powers is covered using these materials, all of which are

available in thin3, self supported foils with purities of the order of 99.9% 4

[34]. Tin is an exceptional example as it has a relatively low atomic density

compared to its atomic mass, making the stopping power low, yet remaining

accessible to the experiment by having a high Coulomb barrier. It was de-

cided to implant a selection of these foils with 3He ions in order to perform

a test experiment for the reaction 3He(20Ne,4He)19Ne.

The methods of implantation of the targets with 3He, and the sub-

sequent foil analyses to determine the actual 3He content, are described in

detail in Appendix A.

3.5 Experimental technique and results

3.5.1 Experimental setup

The setup for the first test experiment of the 3He(20Ne,4He)19Ne reaction

consisted of a large cuboid shaped scattering chamber into which were re-

3‘Thin’ in this context refers to thicknesses of the order of a few micrometres.
4With the exception of Tin, which is available from suppliers with a standard maximum

purity of 99.75%
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Material VC (MeV) Elab (MeV)
Mg 25.3 47.5
Al 26.9 47.8
Sn 77.2 90.7
Ta 102.9 114.9
W 104.0 115.8
Au 109.3 120.9

Table 3.1: Approximate values of the Coulomb barrier and corresponding equiv-
alent incident lab energies for 20Ne on various metals.

Material Stopping power (MeV/mm) Density (g/cm2) Z, A
Ni 4929 8.912 28, 58
Sn 2880 7.287 50, 120
Ta 5349 16.4 73, 181
W 6167 19.3 74, 184
Au 5975 19.282 79, 197

Table 3.2: Stopping powers (for 50 MeV incident 20Ne) and elemental properties
of various target materials.

cessed two cylindrical wells at 0◦ and 90◦ to the beam direction. Into the

well at 0◦ was inserted a 70% HPGe detector, while into the other well a

45% HPGe detector with a Berylium window was placed. The 0◦ detector

sat at a distance of ∼ 60 mm from the target position with the active vol-

ume subtending a total angle of approximately 60◦ while the 90◦ detector

was at a distance of ∼ 45 mm subtending a total angle of around 80◦. At

the target position a laterally mobile target ladder contained three target

positions mounted with either a Tungsten or Aluminium implanted foil, a

Tungsten or Aluminium unimplanted foil and a blank target frame. At 0◦

directly behind the target sat a ∆E-E particle telescope consisting of a 65

µm p-n junction Silicon detector and a 900 mm2 area, 700 µm thick fully

depleted PIPS detector. A 12 µm thick Tantalum beam stop foil was placed

between the target and the telescope, protecting the Silicon detectors, yet
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Figure 3.3: Schematic of the 3He(20Ne,4He)19Ne test experiment setup.

allowing α particles from the reaction of interest to be transmitted. A 0.8

mm diameter Gold collimator was positioned approximately 60 mm in front

of the target ladder, from which the current was measured. The current was

also taken off the Tantalum beam dump foil. Figure 3.3 shows a schematic

of the setup.

The 50 MeV 20Ne beam was produced using the CYCLONE5 110 cy-

clotron facility at Louvain-la-Neuve, Belgium. Neon gas of natural isotopic

abundance is ionised in an ECR ion-source and ions are extracted using an

electrostatic field. These are then injected into the centre of the cyclotron,

and 20Ne ions of charge state 4+ are accelerated up to the required energy,

extracted using a 150 kV/cm electrostatic plate device and transported to

the experimental station prior to which several quadrupole and dipole mag-

5The CYCLONE 110 cyclotron is capable of accelerating ions up to energies of
110Q2/M, where Q is the charge state and M is the mass [35].
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nets ensure correct focussing, steering and transmission of the beam. The

beam focus and steering is checked using a thermoluminescent Quartz tar-

get positioned at approximately 1 metre in front of the target position. The

estimated beam spot size at the Quartz position was around 10 mm in di-

ameter. The beam transmission into the scattering chamber is checked by

minimising the current on the Gold collimator and maximising the current

on the beam dump. Currents of an average of 10 nA (electrical) were used

during the experiment, which corresponds to around 1.5× 1010 particles/s,

using 4+ charge state.

During this experiment, approximately 13 hours were spent with beam

on the 3He implanted Tungsten target. A further 6 hours approximately

were spent with an unimplanted Tungsten target at the target position.

Calibration runs were performed using standard 60Co, 88Y, and 22Na γ-

ray line sources, while data were also taken with an Americium-Berylium

neutron6 source which has a high energy γ-ray at 4.439 MeV. A standard

Am-Cu-Pu α-particle source was used to calibrate the particle detectors.

3.5.2 Results

In the experimental data, certain aspects have to be identified sequentially

to check the success of the reaction in populating excited states of 19Ne.

Firstly, α-particles from the reaction have to be identified. Secondly, γ-ray

peaks associated with these events have to be found and related to possible

decays of an excited 19Ne nucleus. Also, a good check for the γ-ray data is to

6The α-particles resultant from the decay of 241Am into 237Np and then to 233Pa
combine with the Berylium in the source by the reaction 9Be(α,nγ)12C, where the γ-ray
is from the first excited state of 12C.
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see the decay from the first excited state of 20Ne, which should be populated

via the Coulomb excitation of the beam in the Tantalum stopping foil.

During data reduction, the calibrated and gain-matched particle de-

tector data is used to construct a 2-dimensional particle identification spec-

trum. For each valid event (defined as an event for which data is contained

in both the ∆E and E detectors and in either of the Germanium detectors),

the total energy E+∆E is plotted against the particle identification relation,

given by7

(∆E + E)n − En ∝ TMn−1Z2

where T is the thickness of the ∆E detector, M is the mass of the

projectile, and Z the charge of the projectile.

Figure 3.4 shows the 2-dimensional particle identification spectrum

representing a large percentage of the total data collected on an implanted

Tungsten target. Clearly seen are the scattered 3He nuclei as well as the scat-

tered 4He, some of which are the result of the reaction 3He(20Ne,4He)19Ne.

Figure 3.5 shows sections of the raw Germanium detector data for

both the 0◦ and the 90◦ positions, compared with the corresponding data

when no 3He was present in the target. Clearly seen are the 511 keV γ-rays

ever-present in the radiation background, as well as some Coulomb excitation

peaks from the Tungsten target and Tantalum beam stop. These peaks have

been identified as the transitions: A = 182W 4+ → 2+ (229.322 keV), B =

184W 4+ → 2+ (252.848 keV), C = 186W 4+ → 2+ (273.97 keV) and D =

181Ta 11
2

+ → 7
2

+
(301.62 keV). The peak at X is a candidate for the 19Ne first

7This relation can be derived from the semi-empirical range formula for light ions in
Silicon, where R(E) = a(M, Z)En [36]
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Figure 3.4: Particle identification spectrum.
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excited state decay of 238.27 keV. To ascertain which γ-rays come from the

reaction of interest, a 1-dimensional gate is put on the particle-identification

variable ensuring only α-particle associated events are incremented into the

relevant γ-ray spectra.

Figure 3.6 shows the resulting low energy sections of the α-particle

coincident γ-ray spectra. The identification of the decays from the first and

second excited states of 19Ne have been made. The first excited state of 19Ne

has an energy of 238.27 keV, and a mean lifetime of 18 nanoseconds. Because

the excited 19Ne nucleus travels a large distance in this time, it will have

decelerated to rest in the Tantalum beam stop before it decays. Therefore

the γ-ray from this decay has no Doppler shift and is observed at its full

energy. The peak should therefore have the same profile in each detector.

The second excited state of 19Ne has an energy of 275.09 keV, and a mean

lifetime of 42.6 picoseconds. Here the recoil nucleus should partially make

it out of the target and into the Tantalum before decaying. We therefore

expect to see a Doppler-broadened peak at 0◦, and in fact what is observed

is a double peak-like structure which may consist of a stop-peak and the

Doppler-shifted component.

Table 3.3 lists the excited states that might be populated in this ex-

periment up to 4197.1 keV with their corresponding γ-decay energies and

intensities. A Monte Carlo calculation was made using the cross-sections of

ref. [6] for the 3He(20Ne,4He)19Ne reaction at an energy corresponding to

twice that of this experiment, in order to estimate the relative intensities of

the peaks from 19Ne decay. The simulation took into account the branching

ratios for the decays and Germanium detector efficiency. Figure 3.7 shows
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respectively. The red data are the corresponding unimplanted target runs. Marked
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Ex (keV) Jπ τ Eγ (keV) Intensity (%)
238.27 5/2+ 18.0 ns γ0 238.27 100
275.09 1/2− 42.6 ps γ0 275.09 100
1507.6 5/2− 1.0 ps γ275 1232.5 100

γ238 1269.3 14
1536.0 3/2+ 19 fs γ275 1260.9 5

γ238 1297.7 100
1615.6 3/2− 99 fs γ275 1340.4 100

γ238 1377.2 14
γ0 1615.5 29

2794.7 9/2+ 97 fs γ238 2556.2 100
4032.9 3/2+ < 35 fs γ1536 2496.7 19

γ275 3757.4 6
γ0 4032.4 100

4140 (9/2)− < 0.21 ps γ1508 2632 100
4197.1 (7/2)− < 0.25 ps γ1508 2689.3 100

γ238 3958.4 25

Table 3.3: Excited states of 19Ne and γ-ray decay energies up to 4197.1 keV.

the spectrum, without detector resolution effects or Doppler shifts included,

resulting from the Monte Carlo simulation. It can be seen from the figure

that the most intense set of γ-rays seen from the decaying nucleus are those

at 238 keV and 275 keV. This is partly due to the larger cross-section for

formation of these states, and partly because higher energy states will feed

through these states with the emission of higher energy γ-rays in coinci-

dence. The next most intense group of γ-rays are those between 1-2 MeV.

Figure 3.7 also shows these would have at least an order of magnitude lower

intensity than the 238 keV and 275 keV peaks. Successively higher energy

γ-ray groups would have lower and lower intensity, until the γ-ray of interest

from the decay of the 4.033 MeV state should be seen with an intensity of

less than one-hundredth of that of the 239 keV and 275 keV peaks.

Figure 3.8 shows the sections of the α-gated Germanium spectra where
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Figure 3.7: Relative intensities of γ-rays from decay of 19Ne from states up to
4197 keV from a Monte Carlo simulation. The top section shows the full range
of γ-rays from 0-4.5 MeV, while the bottom section focuses on the 1-2 MeV group
of γ-rays.
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one would expect to see the next most intense γ-rays from 19Ne. The arrows

indicate where these peaks would be in the 90◦ spectrum. There is no

discernible difference between the implanted target data (black) and the

unimplanted target data (red) in this region. The peaks seen in these spectra

are thought to result from fusion-evaporation background events.

The absence of the expected peaks in this region either indicates that

higher energy excited states are not being formed in the reaction, or they

are being formed but the γ-rays are not being detected due to the lack of

sensitivity in the Germanium detector setup. Indeed, a look at the high

energy section of the Germanium detector data (figure 3.9) shows no visible

peaks identifiable as decay lines from 19Ne. It is therefore unlikely that we

can tell from the γ-ray data alone whether or not excited states of 19Ne were

being formed here.

In order to ascertain if excited states in 19Ne other than the first or

second excited states were being formed, the α-particle spectra were gated

on the 238 keV and the 275 keV peak in either Germanium detector. Events

coincident with a peak count were incremented to a separate spectrum while

events coincident with a background count in the peak region were decre-

mented from the same spectrum. This resulted in the spectra shown in

figure 3.10. Clearly seen are peaks in the particle spectra corresponding to

excited states in 19Ne. The corresponding data from the unimplanted target

show no such peak formation, and indicate that the peaks are truly associ-

ated with the reaction 3He(20Ne,4He)19Ne. Given that the particle detectors

subtend an angle of around 20◦, the angular resolution is not sufficient to

resolve individual states in 19Ne. However, the separate groups of states, ie.

those below 1 MeV, those between 1 MeV and 2 MeV, that at 2.79 MeV and
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Figure 3.10: Total alpha particle energy gated on the first and second excited
states of 19Ne. The coloured lines are guides to the energies of scattered 4He from
the reaction, at 0◦, for selected excited states in 19Ne.
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Figure 3.11: Re-binned α-particle spectra gated on first and second excited state
decays, showing the kinematic limits for formation of the 2.795 MeV and 4.033
MeV states. The 2.795 MeV state only decays to the first excited state, so that
the peak in the α-spectrum gated on the second excited state which lies near the
low energy kinematic limits for the 2.795 MeV state must correspond to a higher
energy excited state.
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those around 4 MeV would tend to be separated. In the figure, the ener-

gies of scattered 4He from the reaction at 0◦ have been marked for selected

excited states. Because it is not known if the angular distribution peaks at

0◦ or higher, it is not possible to directly identify states from this energy

spectrum.

Figure 3.11 shows rebinned versions of the spectra of figure 3.10. In the

top spectrum, the separate rebinned spectra of α-particles gated on the first

excited state and second excited state are shown. The highest energy peak

(corresponding to the lowest excitation energy in 19Ne) in the spectrum gated

on the 238 keV γ-ray is consistent kinematically with the direct formation of

the first excited state of 19Ne. The second highest energy peak is seen in the

second excited state gated spectrum, and is consistent kinematically with

the direct formation of this state. The top picture also shows the kinematic

limits for the formation of the excited state at 2.795 MeV. Therefore, any

α-particle events with lower energy than these limits must have come from

a state in 19Ne higher than 2.795 MeV. The next such state is in fact the

4.033 MeV state. The 2.795 MeV state only decays to the first excited

state, and therefore should not be seen in the spectrum gated on the 276

keV γ-ray. Therefore the peak to the low energy side of the blue marker

must correspond to a state of higher energy than 2.795 MeV. The lower

picture shows the kinematic limits for formation of the 4.033 MeV state,

superimposed on an amalgamated spectrum of α-events gated on both the

first and second excited state γ-rays. This clearly shows that the low energy

peak at around 23 MeV α-particle energy is consistent with the formation

of the 4.033 MeV state. However, since the true angular distribution of the

reaction at these angles is unknown, an assignment to this kinematic group
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cannot be justified since contributions from higher energy states cannot be

ruled out. The detected α-particle energy at 0◦ corresponding to a 19Ne

excited state of around 5.5 MeV would be approximately 22.4 MeV. This is

the maximum energy the α-particle from this state could have. From figure

3.11, it is quite easy to see that this then constrains the possible makeup of

the lowest energy peak even further; we can rule out any states higher than

5.5 MeV. Thus the highest energy excited states formed in this reaction are

between 4.033 MeV and 5.5 MeV.

These data show evidence that excited states in 19Ne with higher en-

ergy than 2.795 MeV are being formed in the reaction, with only the result-

ing secondary γ-rays from the first and second excited states being detected.

However, direct assignments to the peaks in the α-particle spectra coinci-

dent with these decays cannot be made since individual states cannot be

resolved.

In considering the branching ratios from the 4.033 MeV state, and how

they feed into the first and second excited states, we can say that the ratio

of 238 keV γ-rays to the 275 keV γ-rays associated with the 4.033 MeV state

decay is expected to be around 18:7. From figure 3.10, we can see that the

α-peak at around 23 MeV is stronger in the 238 keV γ-ray gated spectrum

than in the 275 keV γ-ray spectrum, although it is difficult to say by how

much because of the poor statistics. However, without considering decays

from states higher than 4.033 MeV, we cannot derive detailed information

about the strength of the 4.033 MeV state based on this data.
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3.6 Conclusion

The data collected in this experiment have shown that excited states in

19Ne between 4.033 MeV and 5.5 MeV have been formed in the reaction

3He(20Ne,4He)19Ne, using 3He implanted metal targets designed to facilitate

the possibility of a measurement of state lifetimes using the Doppler-shift

attenuation method. γ-rays from the first and second excited states of 19Ne

have been detected in coincidence with α-particles from the reaction. No

direct γ-ray decays from higher energy states have been observed, due to the

combination of low efficiency of detector setup and the small cross-section

of the reaction.

A specific discussion on the future of the measurement of the 19Ne

state is presented in chapter 8, along with recommendations for proceeding

with the method described in this experiment, based on the results found

here.



Chapter 4

21Na(p,p)21Na Resonant Elastic

Scattering

The remainder of this thesis focuses on a radioactive beam experiment

designed to probe resonances in the 21Na+p system relevant to the astro-

physically important 21Na(p,γ)22Mg reaction. This chapter outlines the im-

portance of this reaction and describes the techniques required to measure

resonant properties in the 21Na+p system in inverse kinematics.

4.1 The role of the rp-process in nucleosyn-

thesis and the 21Na(p,γ)22Mg reaction

Beyond the hot CNO cycles, other cycles contribute to the processing of

nuclear material. Because the Coulomb barriers are higher compared to

those of the CNO cycles, these higher mass cycles only become important at

temperatures greater than those associated with CNO cyclic processing [16].

The main cycles immediately above the hot CNO cycles are the NeNa and

70
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MgAl cycles. Analogous to the breakout of the hot CNO cycles, breakout

from these cycles by various routes can lead to the beginning of proton-rich

nucleosynthesis via the rp-process.

4.1.1 NeNa cycle

The low temperature NeNa cycle proceeds via the reaction sequence

20Ne(p, γ)21Na(β+)21Ne(p, γ)22Na(β+)22Ne(p, γ)23Na(p, α)20Na.... (4.1)

The cycle is closed because of the β+ waiting points at 21Na and 22Na,

which have timescales of 22.5 s and 2.602 yr respectively, and also the fact

that the 23Na(p,α)20Ne reaction is more probable than the 23Na(p,γ)24Mg

reaction at low temperatures.

It is interesting to note that in their famous treatise on synthesis of

the elements in stars, Burbridge, Burbridge, Fowler and Hoyle limited their

consideration of stellar hydrogen burning to those isotopes below and up

to the close of the NeNa cycle [16]. However, today astronomical observa-

tions indicating strong abundances of proton-rich isotopes and certain stable

elements create the need to explain nucleosynthesis beyond the NeNa cycle.

4.1.2 MgAl cycle

Current data suggest that at temperatures in the range 0.18 ≤ T9 ≤ 0.6,

the 23Na(p,γ)24Mg reaction becomes faster than the 23Na(p,α)20Na reac-

tion. When this happens, the NeNa cycle leaks into the MgAl cycle, which

proceeds via the sequence
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24Mg(p, γ)25Al(β+)25Mg(p, γ)26Al(β+)26Mg(p, γ)27Al(p, α)24Mg.... (4.2)

This reaction is therefore also closed by a (p,α) reaction, which com-

petes with a (p,γ) reaction at higher temperatures, where the possibility of

breakout from the cycle becomes more likely.

4.1.3 rp-process

In order to explain the synthesis of elements up to Z,N=50, it is essential to

consider the rapid-proton (rp) process, which is characterised by a fast se-

quence of proton capture reactions on stable and radioactive nuclei. These

reactions must compete with β+ decay, which brings the nucleosynthesis

closer to stability, and photodisintegration reactions [37]. When temper-

atures are such that proton captures are faster, the reaction pathway can

proceed in various ways to form higher mass proton-rich isotopes far from

stability.

The rp-process depends strongly upon the conditions in the stellar

environment, and high temperatures and hydrogen-rich surroundings are the

vital components to these conditions. The process is thought to be initiated

in a global sense when there is either a rapid increase in temperature in

a hydrogen rich environment (such as a shock front), or when there is the

rapid addition of hydrogen-rich material into an already hot environment

[38], such as the accretion process in novae and X-ray binary systems.

One trigger reaction for the rp-process is thought to be 19Ne(p,γ)20Na,

which has been studied previously [19] [39]. This reaction allows the possi-
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bility to bypass the NeNa cycle by the subsequent reaction 20Na(p,γ)21Mg,

and assuming conditions are hot enough, compete with β+ decay to keep

the nuclei away from stability.

Typical rp-process temperatures are around T9 ≥ 0.5. At these tem-

peratures, the NeNa cycle can be broken via the 22Na(p,γ)23Mg reaction,

and the MgAl cycle broken by the 26Al(p,γ)27Si reaction [19]. These are

then alternative routes into the rp-process along with the 21Na(p,γ)22Mg

reaction. Figure 4.1 shows the pathways of the NeNa and MgAl cycles, as

well as early (p,γ) pathways leading to or in the rp process, as well as the

competing β+ decay pathways which drive nucleosynthesis closer to stability.

Many of the important rp-process (p,γ) reaction rates involving radioactive

isotopes are unknown experimentally, in contrast to β+ decay rates, which

have been more extensively studied.

The rp-process ends in a possible two ways; either the SnSbTe cycle

can halt the nucleosynthesis of heavier elements than Te, or the environment

can run out of hydrogen fuel [37].

The main importance of the study of the rp-process is for nucleosyn-

thesis. The CNO cycle would still dominate the energy generation process

in nova rp-process sites, but the rp-process has the largest impact on the

formation of the chemical elements. In X-ray bursts, the rp-process may not

be as important for nucleosynthesis since distribution of nucleosynthesised

material may be impeded by the strong gravitational pull of the neutron

star. However, at the higher temperatures encountered in X-ray bursts,

the energy released in the rp-process is comparable to that released in the

CNO cycle, making consideration of the rp-process as an energy generation

mechanism more important [37].
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Figure 4.1: Paths in the early rp process (red), NeNa cycle (blue) and MgAl
cycle (green). The dashed lines denote β+ decay, the solid vertical lines (p,γ)
reactions and the solid diagonal lines (p,α) reactions.



Chapter 4. 21Na(p,p)21Na Resonant Elastic Scattering 75

4.1.4 Abundances of Ne and Na

Part of the challenge in understanding rp-process nucleosynthesis is to ex-

plain why high abundances of certain isotopes appear in the spectra of cer-

tain types of novae. Such novae are thought to contain an oxygen-neon-

magnesium (ONeMg) white dwarf. Overabundances of Ne in particular are

observed in these systems [40]. Associated with these novae is the radioiso-

tope 22Na, one of the participants in the NeNa cycle and rp-process. It has

long been suggested that 22Na could be used as a diagnostic to compare

nova reaction network models to actual nova outbursts. This is because

there is a readily identifiable observational signature of the presence of 22Na

in novae systems. 22Na β+ decays into an excited state of 22Ne which then

γ-decays with an energy of 1.275 MeV. The mean lifetime of this decay of

3.75 yr allows the possibility of extrapolation to measure how much 22Na

was initially synthesised in a nova event, based on the observations of the

decay γ-ray some time after the event. Space based γ-ray observatory instru-

ments, such as CGRO/COMPTEL1, CGRO/OSSE2, or INTEGRAL3, offer

the possibility of identifying and measuring these decay lines in nova events

around the Galaxy [41] [42]. INTEGRAL is currently the most advanced

of these instruments, and should be operational by 2003. The satellite will

carry two γ-based instruments, a spectrometer and a spatial imager, comple-

mented by X-ray and optical instruments, and offers the best possibility of

22Na abundance measurements in novae, which if made, will place significant

constraints on existing nova models.

1Compton Gamma Ray Observatory/Imaging Compton Telescope
2Compton Gamma Ray Observatory/Oriented Scintillation Spectrometer Experiment
3International Gamma Ray Astrophysics Laboratory
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4.1.5 21Na(p,γ)22Mg

To compare observations with nova models, it is crucial to know the rates of

formation of 22Na at a given temperature, via different channels. The forma-

tion of 22Na in novae can proceed via the sequences 21Na(p,γ)22Mg(β+)22Na

or 21Na(β+)21Ne(p,γ)22Na. Of these two channels, the latter presents the

least uncertainty, since the β+ decay lifetime and the 21Ne+p capture rate

are well known. In contrast the rate of the 21Na(p,γ)22Mg reaction has only

previously been based on information taken from comparisons with analogue

nuclei [43].

For a given proton number, the isotopes on the neutron-deficient side

of stability generally have smaller proton separation energies than the stable

isotopes. This means that for compound nuclei formed in proton capture

reactions, those which are closer to stability will be formed in a region where

the level density is high in the compound nucleus. Thus for stable nuclei or

those close to stability, Hauser-Feschbach statistical model calculations can

be included in network calculations if experimental data are absent or lim-

ited [43]. This is not generally true for radioactive nuclei far from stability,

where the compound nuclei are formed in a region where the level density

is low (due to the small proton separation energy). In these situations, the

reaction rates depend on the contribution of resonances from a few isolated

levels and the low energy direct capture probability. Thus, where the statis-

tical model cannot be applied, it is vital to determine the reaction rates for

proton-rich nuclei experimentally. This is especially true in the case of the

21Na(p,γ)22Mg reaction, where the reaction rate may depend strongly on the

contributions from only a few resonances for which limited data exist.
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4.2 Structure of 22Mg

The proton capture on 21Na forms the compound nucleus 22Mg. The proton

separation energy of 22Mg is 5.502 MeV, therefore the (p,γ) reaction will form

22Mg excited states with excitation energy Ex ≥ 5.502 MeV. In this region,

nuclear energy levels are sparse, and so the 21Na(p,γ)22Mg rate depends

only on the resonant contributions from these few states, and a small direct

capture component.

22Mg is an even-even nucleus with four protons in the s-d shell for the

Ground state configuration, employing simple shell model arguments. Ex-

cited states of 22Mg are known to show strong two-particle structure prop-

erties and are populated strongly in two-particle transfer reactions, such as

24Mg(p,t)22Mg, studied in ref. [44]. Most of the structure of 22Mg had been

mapped up until recently using the aforementioned reaction and β spec-

troscopy studies [45] [46], as well as the reaction 20Ne(3He,nγ)22Mg [47].

Recently, due to the increased astrophysics interest in 22Mg, which is im-

portant both for the formation of 22Na in novae and the breakout of the

hot CNO cycle via the 18Ne(α,p)21Na reaction, other reactions have been

used to study its structure. Recently, another study of the 24Mg(p,t)22Mg

reaction has been performed [7], leading to the identification of new states

in 22Mg. Also, the reactions 25Mg(3He,6He)22Mg [48], 24Mg(4He,6He)22Mg,

[49], and 12C(16O,6He)22Mg [50] have been studied.

Table 4.1 shows values of excitation energies in 22Mg above the proton

threshold found in various studies. The adopted values were calculated using

values from all the previous studies except that of the recent ref. [48]. Of
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(p,t) (p,t) (3He,n) (3He,n) (3He,nγ) (3He,nγ) (16O,6He) (3He,6He) adopted
Ref. [7] Ref. [44] Ref. [51] Ref. [52] Ref. [47] Ref. [53] Ref. [50] Ref. [48] valuesa

5713.9∗ 5738±35 5699±20 5680±30 5714.4±1.5 5713±2 5711±13 5713.9∗ 5713.9±1.2
5837±5 5837±5

5961.9±2.5 5945±20 5980±30 5961.9±2.5
6045.8±3.0 6061±37 6041±11 6051±4 6045.6±2.9
6246.4±5.1b (6281±33)c 6263±20c (6220±50)c (6298±50)c 6255±10 6246±4 6248.2±4.5c

6322.6±6.0 (6281±33)c (6220±50)c (6298±50)c 6329±6 6322.6±6.0
6613±7d 6645±44 6573±20 6606±11 6616±4 6608.5±5.6
6787±14 6836±44 6770±20 6760±90 6767±20 6771±5 6780.4±9.6

6889±10 6878±9

Table 4.1: Excitation energies (keV) of 22Mg above the proton threshold, resulting from previous experimental studies. Values
marked with an asterisk were used as calibration points in their respective experiments.

aaverage values from ref. [7]
bProbably a doublet [7].
cThe “doublet” states at Ex = 6249 and 6323 keV were not resolved by these measurements.
dPossibly a multiplet of states [7].
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these known levels, spin-parity assignments have been made in only three

cases, two of which are unambiguous [7]. The Ex=5714 keV level has been

assigned Jπ = 2+, the Ex=5837 keV level Jπ = (2+ − 4+), and the Ex=6046

keV level assigned Jπ = 0+. The remaining levels above the proton threshold

have unknown spin-parity. Consideration of spin-parities has been treated

mostly in experiments using two-nucleon transfer reactions. Assumptions

have been made in these cases that only states in 22Mg of natural parity will

be strongly populated, an assumption which will be addressed later in this

work. The 12C(16O,6He)22Mg reaction of ref. [50] is thought to proceed via

the compound nucleus mechanism, restricting the formation of 22Mg states

to those of natural parity only. The reaction 25Mg(3He,6He)22Mg of ref.

[48] should populate both natural and unnatural parity states in 22Mg. The

resonance strengths of all the states above proton threshold are not known

experimentally, and any cases where reaction rates have been estimated have

been based on analogue state assignments in 22Ne.

The first three levels above proton threshold are thought to be impor-

tant contributors to nova nucleosynthesis at the relevant temperatures [40],

and previous reaction rate calculations have included these resonances with

assumed resonance strengths. Of these three, the existence of the level at

Ex=5837 keV has been brought into question since it has only been seen

in one experiment, and not others where it should be populated with com-

parable strength. The fact remains that for nova network calculations, the

properties of these three resonances need to be experimentally determined,

which includes the spin-parity assignments, proton partial widths and total

widths. Less attention has been paid to the higher energy resonances since

the focus has been for relatively low temperature nova scenarios. However,
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as the temperature rises in other scenarios, the contributions from higher

states may become important, especially if they are low orbital angular mo-

mentum captures, introducing the possibility also that their influence might

extend down into the nova temperature region with comparable strength to

the direct capture rate.

4.3 Radioactive beams and resonant elastic

scattering

It is imperative to have some sort of direct experimental determination of

level properties in 22Mg in order to calculate the 21Na(p,γ)22Mg reaction rate.

Because the actual reactions of interest involve radioactive target nuclei, up

until recently it has been impossible to measure the rate of these reactions

directly, since the target nuclei do not live long enough to bombard with

protons using the traditional (p,γ) reaction method. However, developments

with accelerated radioactive beams and experiments in inverse kinematics

during the last 10-15 years have made it possible to measure the reaction

rates of some astrophysical reactions directly, or via the properties of proton

resonances.

Equation 2.10 is used to calculate the resonant reaction rate, and the

resonance strength, for a (p,γ) reaction, is given by:

ωγ =
2J + 1

(2I1 + 1)(2I2 + 1)

ΓpΓγ

Γ
(4.3)

The direct capture component is dealt with separately, but typically

for these reactions (ie. 21Na(p,γ)22Mg) is extremely small. The important
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resonant parameters to be measured for Nuclear Astrophysics therefore are

J, the spin of the compound nucleus state, Γp, the partial proton width of

the state, Γγ, the partial γ-width of the state, Γ the total width of the state

and ER, the resonance energy of the state.

4.3.1 Inverse kinematics methods

Radioactive beams are in general difficult to produce. The products resulting

from bombardment of some kind of stable target have to be separated and

accelerated to the energy of choice. The beam particles are also constantly

β-decaying, so transport of the beam to the target with sufficient intensity

without losses is tricky. Also, the cross-sections in astrophysical capture re-

actions are usually very small, of the order of millibarns and below, requiring

large beam intensities of the order of 108 particles/sec. Furthermore, due to

the nature of the acceleration methods required to make a radioactive beam,

the energies cannot be stepped in small precise increments like with a Van

de Graaf generated proton beam.

The recoil separator facility DRAGON at TRIUMF provides the pos-

sibility to measure (p,γ) reaction rates directly using radioactive beams on

a gaseous hydrogen target. When the reaction occurs over a resonance, the

method is analogous to the traditional method which extracts the width

by looking at the γ-ray yield in coincidence with recoil nuclei selected by

the spectrometer. There are several problems encountered by this method.

The beam cannot be stepped in as small increments as can a Van de Graaf

accelerator. Instead radioactive beams tend to have associated energy cen-

troid uncertainties of around 10 keV/nucleon, depending on how they are
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produced. Also, gaseous targets are difficult to use because the density dis-

tribution varies through the target. Such an effect has to be measured to

correct for this in the width measurement. To some extent, the spectro-

scopic structure of the compound nucleus has to be known before a (p,γ)

measurement of a specific resonance can be measured; astrophysically im-

portant resonances tend to be very narrow and spaced far apart, so that prior

information about the resonant structure from some method is important.

The Centre de Recherches du Cyclotron at Louvain-la-Neuve, Belgium,

pioneered a technique for use with inverse kinematics beams designed to em-

ploy elastic proton scattering in order to deduce crucial resonant parameters

complementary to the difficult (p,γ) reaction measurements [54] [55] [56] [57]

[58] [59] . This technique utilises thick polyethylene ( [CH2]n ) targets4 on

which the beam is incident. The beam particles lose energy through the tar-

gets, which are typically 250-1000 µg/cm2 thick, and scattering can therefore

occur at a range of centre-of-mass energies. If there is a resonance present

in the energy range scanned by the target, the cross-section of the outgoing

protons results in the detected spectrum being greatly modified. Because

the energy loss of the outgoing protons is small, and the kinematics of the

proton do not vary greatly over angle for inverse kinematics elastic scatter-

ing, the spectrum is not greatly degraded by straggling effects. Therefore,

the experimental spectrum is very closely equivalent to the type of excitation

function that would be measured in a typical elastic scattering normal kine-

matics experiment where the beam energy is stepped, except in this case, it

is the energy loss in the target which is effectively doing the “stepping”.

4The subscript n signifies that the type of polyethylene used is low density as opposed
to the long-chain polymer hioh density type.
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The experimental proton spectrum in terms of detected proton lab

energy can be transformed into the centre-of-mass frame. The relationship

between outgoing proton energy and incident centre-of-mass energy for in-

verse kinematics elastic scattering is given by

Ep,lab = 4
m1

m1 + m2
Ecm cos2 θlab (4.4)

while the relationship between the lab angle and the centre-of-mass

angle is given by

θcm = π − 2θlab (4.5)

In terms of the centre-of-mass energy and centre-of-mass angle, a theo-

retical cross-section function can then be fitted to the corrected experimental

spectrum. Usually, the absolute energy calibration of the spectrum is made

by comparing the data to that of a known resonance scanned using the same

method. This also gives information about any small degradation of resolu-

tion effects. The free parameters in the fit are effectively the proton width

Γp, the total width Γ, the resonance energy ER and the spin of the state Jπ.

By combining a series of thick target runs at different incident beam energies,

a large energy region in the centre-of-mass can be covered, possibly discov-

ering previously unknown resonances and accurately defining the positions

of others. In this way, vital information for the (p,γ) measurement can be

obtained. However, as a stand-alone method, the determination of ER, Γp, Γ

and Jπ can put limits on the reaction rate if values of Γγ are estimated from,

for example, the mirror nucleus. The resonant elastic scattering method de-

scribed here was chosen in this work to measure some of these parameters
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for potentially important resonances to the 21Na(p,γ)22Mg reaction.

Figure 4.2 shows a typical variation of an s-wave type resonance over

a range of lab angles. The maximum scattering angle for the recoil protons

is 90◦, which corresponds to 0◦ in the centre-of-mass system. One can see

from the picture that there is a significant variation of the resonance shape

over the range 0◦ ≤ θlab ≤ 45◦, which corresponds to a centre-of-mass angle

range of 90◦ ≤ θcm ≤ 180◦. At θlab = 0◦, the size of the resonance with

respect to the Coulomb backGround is greatest.
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Figure 4.2: Variation of a typical s-wave resonance over energy and angle.



Chapter 5

Experimental Procedure

The elastic scattering experiment which is the subject of the remainder

of this work utilised the methods described in the previous chapter, and was

performed at the TUDA facility at ISAC-TRIUMF, Vancouver, Canada.

TRIUMF is the TRI-Universities Meson Facility, Canada’s national par-

ticle and nuclear physics lab. The lab is centred around what remains the

world’s largest sector-focussing cyclotron, capable of accelerating H− ions

up to 520 MeV. Originally used for the production and study of mesons in

the field of sub-nuclear physics, the cyclotron is now mainly used for the

production of Radioactive Ion Beams in concert with the ISAC, (Isotope

Separator and ACcelerator), facility.

The TUDA, (Triumf-U.K. Detector Array), facility is a multipur-

pose charged particle Silicon detector array, scattering chamber and instru-

mentation apparatus, designed for use in radioactive beam facilities such as

ISAC, where highly segmented, large solid angle detectors provide an ex-

perimental advantage over traditional Silicon detector technologies. In the

following chapter, the experimental setup of the TUDA facility during the

86
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experiment will be detailed. The production and acceleration of the ion

beams used in the experiment will be explained, including an overview of

the ISAC facility itself.

5.1 ISAC

ISAC is a facility for producing post-accelerated radioactive and stable nu-

clear beams. The facility can be divided into six sections: The beam produc-

tion apparatus, the Low-Energy Beam Transport (LEBT) section, the Ra-

dio Frequency Quadrupole (RFQ) acceleration section, the Medium-Energy

Beam Transport (MEBT) section, the Drift-Tube Linac (DLT) linear accel-

eration section and the High-Energy Beam Transport (HEBT) section. The

beam production section consists of a target station for the production of

radioactive isotopes and an off-line ion source (OLIS) for the production of

various stable ions.

5.1.1 Radioactive ion production

The radioactive production target consists of a water cooled Silicon Car-

bide (or Tantalum or Niobium, depending on nuclear species required) thick

target. The proton beam produced by the main cyclotron is incident on

the target at energies between 450-500 MeV, with currents of several micro-

Amperes. A menagerie of nuclear reactions occur within the target material,

and the radioactive (and stable) species which are the product of these reac-

tions must diffuse out of the target so that they might be separated, isolating

the specific required ion of interest. An on-line source provides the ionisa-

tion and subsequently the low-energy radioactive ions are extracted into a
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Figure 5.1: 3-dimensional view of ISAC beam hall.



Chapter 5. Experimental Procedure 89

mass-separator. The chosen radioactive species are then transported into

the low-energy transport section (LEBT).

5.1.2 Beam transport and acceleration

In LEBT, the beam is pre-bunched, and transported into the eight-metre

long RFQ, which provides transverse focussing while the time-varying lon-

gitudinal component of the quadrupole field provides acceleration up to a

final fixed energy of 150 keV/A [60] [61].

In the MEBT section, the beam is chopped and then stripped within

a thin Carbon foil to final charge-to-mass ratios of 1/6 ≤ q/A ≤ 1/3. The

beam is then rebunched and transported into the DLT, which provides con-

tinuously variable acceleration to final energies of up to approximately 1.5

MeV/A via a series of successively larger Copper vacuum tanks, within the

skin of which the RF field washes back and forth against the phase of the

central anode, providing the accelerating wave structure.

In the HEBT section several quadrupoles and rebunchers maintain the

time structure and focus the beam. There are two bunchers operating close

to the final achromatic bends in the beamline before the main high energy

experimental stations, TUDA and DRAGON. These bunchers provide

timing resolution of better than 1 nanosecond, compared to a beam bunch

period of 86 nanoseconds. Prior to the TUDA experimental area there is

one last set of focussing quadrupoles.

For the production of stable beams, prior to the LEBT section, there is

a microwave cavity-resonance gas ion-source able to provide several species

of stable ions for acceleration. The system is such that the operators are
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able to switch between stable and radioactive beams (once both are set up)

with the minimum of inconvenience.

5.2 Experimental setup

5.2.1 General layout of TUDA facility

The TUDA facility comprises of a main scattering chamber and an instru-

mentation shack. The scattering chamber consists of two cylindrical sections,

coaxial with the beam, joined either side of a main rectangular section. This

section contains the target ladder apparatus, as well as various modifiable

entry ports, and a turbo vacuum pump. The detector assembly is designed

to sit at a chosen variable position on four support rails, its face perpen-

dicular to the beam axis. The withdrawable rear flange allows the entire

detector assembly to be withdrawn from the chamber, making maintenance

and modification of the assembly extremely convenient.

The front (upstream) end of the chamber contains a collimator assem-

bly allowing up to six positions. These collimators are positioned immedi-

ately after the last quadrupole, so that a variety of different collimator sizes

are required for the different speeds of the focus between the quadrupole

and the target position. During this experiment a collimator of diameter 10

mm was usually in place.

Between the collimator assembly and target position there is an ad-

ditional collimator disc to prevent the primary scattered beam from hitting

the detectors or target assembly. The target ladder itself is a calibrated

linear-drive variable position ladder with up to nine positions. Figure 5.2
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Figure 5.3: Photograph of four LEDA detector segments withdrawn from TUDA
chamber.
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shows a schematic of the setup of the detectors, target ladder and collima-

tors within the scattering chamber, while figure 5.3 shows a photograph of

four LEDA segments positioned on the TUDA chamber support rails.

Connected to the rear flange of the chamber is a beam pipe leading to a

further set of quadrupoles and a beam dump Faraday cup. The quadrupoles

can be optimised to focus an unscattered beam, still in its original charge

state, into the Faraday cup for tuning purposes.

5.2.2 Segmented Silicon detector arrays

The facility is based around the use of LEDA-type Silicon detector arrays.

These detectors are p-n junction type, reverse-biased strip detectors, ar-

ranged in a radially symmetric configuration of sixteen annular strips in

each of eight azimuthal segments [62]. The active area of the Silicon is

set in a transmission style PCB mount, containing the voltage tracks con-

necting the strips on the front (junction) side and the back (Ohmic) side via

ultrasonically-bonded wires to the output connector, which is of unprotected

IDC type.

In this experiment, two detectors were used, positioned at 20 cm and

62.8 cm from the target ladder. In front of each detector, a mylar foil was

placed in order to prevent scattered beam particles from hitting the active

area, thus reducing the data rate and allowing higher beam currents to be

used, while also preventing the detectors from becoming damaged due to

the cumulative effects of ion implantation. Various thicknesses of mylar

were required according to the beam energies used.

The full eight sectors were used for the LEDA detector positioned at
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62.8 cm, while only four were used at the more backward angle detector,

giving altogether 192 separately instrumented discrete detector elements.

This was because the Coulomb cross-section at these backward angles was

higher for recoil protons in the elastic scattering channel. Using only four

sectors at these angles would go some way as to equalising the data rate in

the forward and backward detectors. One of the four backward sectors was

left unprotected by mylar. This was in order to detect the scattered beam

from the Carbon in the targets, allowing the possibility of the normalisation

of the beam current during each run.

5.2.3 Instrumentation and data acquisition

The detectors are instrumented via IDC cabling to preamplifier units which

sit directly behind the detector active area. Because the electronics reside

within the confines of the vacuum chamber, conventional fan-assisted cooling

is impossible. Instead, hollow copper shrouds encase the ends of the PCB,

and the contact is set with thermal paste. An external refrigeration unit

then cycles ethyl-glycol coolant through a network of hoses into each cop-

per shroud, efficiently drawing heat from the PCB. The unit is thermostat

controlled and is able to maintain the temperature of the coolant at a stable

-10◦C, while each of the preamplifiers is kept stable at between 20◦-50◦C.

The detector output signal cabling and services connectors (bias in-

puts, test signal inputs, thermocouple connectors etc.) exit the chamber

through ports in the rear flange of the chamber. The signals then proceed

through IDC 16-way cables into the electronics shack, where the instrumen-

tation and acquisition systems are based. The entire shack is lined with
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Copper plating, effectively making it a Faraday cage, to reduce any back-

ground noise which may interfere with the sensitive instrumentation and

detector setup. The shack is electrically isolated from the rest of the open

plan experimental area, and is provided with a separate clean grounding

line. The scattering chamber is also isolated from the experimental area

and shares the ground line with the shack. This way, all noise levels and

possible interference can be accurately and confidently controlled by the

experimenters.

The primary experimental signals arrive in the shack into a series of

junction boxes. These split each 16-way signal into 2× 8-way connectors.

These signals are input into the 8-channel RAL shaping amplifiers specifi-

cally designed for LEDA detectors. The gain of these amplifiers was set to

give an output analogue signal with a dispersion of 0.5 V/MeV. These ana-

logue signals were input into twenty-four 8-channel SILENA 4418 CAMAC-

interface ADC units, with an input voltage range of around 100mV-10V,

giving a full-scale energy range of around 200 keV-20 MeV. The unpro-

tected sector of the backward angle detector was set with a lower gain to

give a full-scale range of 400 keV-40 MeV, in order to be able to detect the

higher energy signals from the scattered heavy ions.

The ECL-type digital fast signal generated at the timing output of

each RAL amplifier channel is connected to a set of purpose built logic

modules, in this case set as the total OR of all channels. This primary

experimental trigger then must satisfy the conditions of coincidence with the

HF accelerator signal ( 11.8 MHz, from the low β buncher ) and coincidence

with the not busy signal generated via the CAMAC acquisition system. An

accepted trigger generates an ADC gate allowing signals to be converted
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Figure 5.4: Schematic of 21Na+p experiment electronics setup.

into binary words by the ADCs.

The logic signals also pass into a set of LeCroy 3377 CAMAC TDCs,

which are set on common stop mode and are stopped by the accelerator HF

signal. This means that the time of flight of detected particles with respect

to the beam can be measured for the purpose of particle identification.

The CAMAC crates are interfaced to a VME processor which takes the

sequentially read-out data from the CAMAC TDC and ADC conversions and

increments the experimental on-line spectra, using the UK MIDAS software

system, while also creating a raw data file in the local TRIUMF-MIDAS

format.

The read-out time required for the CAMAC crates is a major factor
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in the limitation of the data rate that can be accepted by the acquisition

system. Dead times rise as the data rate becomes so high that the CAMAC

crate becomes increasingly busy. A practical limit of around 3 kHz event

rate is usually enough to cause problems in the acquisition, and dead times

near this region can be large. Thus, efforts were made to limit the event rate

to an acceptable level by the combination of the mylar foil, less backward

sectors, and a reduced beam current than that maximally achievable.

5.3 Stable beam test run: 21Ne+p

5.3.1 Beam production and tuning

It was decided to run a stable beam test experiment immediately prior to

any radioactive beam measurement. The main reason is for the purpose

of the energy calibration of the data using known resonances in the stable

beam plus proton system, however, this test also serves as a good diagnostic

experience for the experimental system, so that data rates, kinematics and

noise levels can be monitored without wasting precious radioactive beam

time.

21Ne was chosen for various reasons: a) it is the isobaric equivalent to

the proposed radioactive 21Na beam, such that the scattering kinematics in

the two experiments will be extremely similar. b) known resonances in the

21Ne+p centre-of-mass energy system in a similar energy range to that of the

proposed 21Na+p study will enable calibration of the radioactive beam data.

c) A 21Ne beam is easily produced from naturally abundant Neon gas. d)

The 21Ne+p system provides a useful comparison for the isobaric analogue
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state systems of 22Ne, 22Na and 22Mg via its T=1 isospin states.

The beam was produced by allowing an amount of Neon gas into the

OLIS ion-source. Here, a standard magnetron produces coherent microwaves

which are guided into the gas chamber causing ionisation. The ions are

extracted into the LEBT line and then into the RFQ. The 21Ne is easily

separable from other ions in the source because of its charge-to-mass ratio,

thus only the desired isotope is accelerated through the RFQ. A final charge

state of 5+ was used in this experiment.

Two 21Ne beam energies of 0.88 MeV/A and 1.35 MeV/A were used

in this experiment, such that the energy loss range through the targets

used would correspond to the region of selected known resonances in the

21Ne+p system. After the setup of each beam by the accelerator operators,

an initial low current tune would be made into the scattering chamber.

Firstly, a blank target frame would be positioned at the target position and

the current at the rear faraday cup be measured. Once 100% transmission

was achieved through this aperture, the frame was replaced by a 2 mm

diameter Aluminium collimator, and a further fine tune using the steering

magnets and quadrupoles performed. Typical transmissions of 80% or more

were achieved through the 2 mm collimator during this experiment.

5.3.2 Run sequence and data

[CH2]n targets of thickness 250 µg/cm2 were used during the two stable

beam runs. During the 1.35 MeV/A run, 23 µm of mylar were used over

both detectors, while for the 0.88 MeV/A run, 23 µm was used over the

forward angle detector and 12 µm over the backward angle detector, to
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lessen straggling of the lower energy scattered protons.

Data were taken over approximately 41 hours for each energy. Typ-

ical currents during the 1.35 MeV/A run were around 200 electrical pico-

Amperes, which for a 5+ charge state correspond to around 2.5× 108 parti-

cles/sec. During the 0.88 MeV/A run, currents used were lowered at around

1.25× 108 particles/sec due to the increased Coulomb cross-section at these

energies resulting in a higher scattering rate.

Figure 5.5 shows an example of the data obtained from detector ele-

ments in the forward and backward angle detectors for the two beam ener-

gies. In this energy region, a pair of p-wave resonances are known [63]. We

also see two peak structures at the low energy side of the spectrum, which

are consistent with resonant inelastic scattering to the first excited state of

21Ne.

5.4 21Na+p radioactive beam run

5.4.1 Beam production and tuning

The radioactive 21Na beam was produced using the Silicon Carbide produc-

tion target. Proton currents of around 4 µA were maintained on the target

at energies of between 450 MeV and 500 MeV. The beam yield was measured

at the ISAC yield station which is located between the mass separator and

the LEBT line, where an Aluminised mylar tape is deposited with activity

from the beam, and a scintillator and HPGe detector are used to examine β

and γ decays in order to determine the amount of 21Na deposited per second

on the tape [64]. Several hundreds of millions of particles/sec of 21Na were
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measured at the yield station, with up to 5 × 108 particles/sec measured

after acceleration through the ISAC system as deliverable beam. The main

diagnostic used to check the beam available to the TUDA chamber was a

withdrawable Faraday cup located just upstream of the TUDA chamber.

5.4.2 Run sequence and data

In this experiment, the beam energies used varied between 0.58 MeV/A and

1.56 MeV/A. Because thick targets can scan a certain centre-of-mass energy

range, a number of different runs and beam energies were chosen so that

successive runs’ spectra overlapped with the previous run in terms of the

centre-of-mass energy covered by that scan. This resulted in a series of 10

thick target runs with 250 µg/cm2 [CH2]n targets. The beam energies used

were 0.58, 0.69, 0.80, 0.88, 0.99, 1.144, 1.240, 1.340, 1.440 and 1.560 MeV/A.

This covers a total centre-of-mass range of around 0.4-1.5 MeV.

Typical currents of around 5 × 108 particles/sec were employed on

average during the experiment. The typical time spent at each energy was

around 48 hours.

Figure 5.6 shows examples of some of the single-strip proton spectra

taken during each of the thick target runs. In most cases, the β background

has been removed for clarity, using techniques which will be fully described

in the next chapter, however, for the lower energy beam runs, the proton

spectra merge with the tail of the β-peak, as can be seen in the spectrum

for the 580 keV/A run.

Initially, several features of the spectra are obvious. There are three

definite large resonances visible in the spectra. In the 880 keV/A and 990
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keV/A runs, there is a large elastic resonance structure visible in the energy

region where the spectra would overlap. In the 1144 keV/A and 1240 keV/A

runs, there is a similar large elastic resonance structure in the overlapping

region, and in the 1440 keV/A run there is a single elastic resonance struc-

ture. Possible regions where inelastic peaks might be observed are at the

low energy sides of the 1440 keV/A and 1560 keV/A elastic peaks, although

hioher statistics are needed to verify this, and this is addressed in the next

chapter. Also, inelastics might be expected at the low energy sides of the

1240 keV/A and 990 keV/A proton spectra, since there are elastic reso-

nances there, indicating the existence of a compound nuclear state. Again,

techniques must be employed to improve the data in order to reveal any

underlying structure in these regions.

In order to try and reveal more structure in the resonance regions,

some thin target runs using [CH2]n targets of 50 µg/cm2 were made at

carefully chosen energies. Using the techniques described in chapter 4, it is

possible to see inelastic peaks more clearly using these thin targets because

with thicker targets, elastic protons from the rear of the target occur with

energies similar to that of the inelastic protons, providing a background on

which the inelastic peaks sit, while for thin targets, the interaction energy

at the rear of the target is not low enough to produce elastic protons at

energies as low as the inelastically scattered protons. The result of these

thin target runs will be described in the next chapter.



Chapter 6

Data Analysis

In this chapter the procedure for extracting, sorting and calibrating

the experimental data is described. The methods used to estimate the exper-

imental resolution are discussed and the results from these used to calibrate

the experimental data via the properties of known resonances in the 21Ne+p

system.

6.1 Data extraction and detector calibration

The raw data for each of the 192 detector channels were extracted into

individual detector element spectra. The runs containing the data for the

α-calibration source were then used to calibrate each detector element in

energy1. Corrections for the energy loss of alpha particles in the Silicon

dead layer (nominal manufacturer’s figure of 0.35 µm for LEDA detectors)

at each strip angle were included.

1The source was a standard open 239Pu241Am244Cm α-emitter with a 2π coverage.
These isotopes emit α-particles with energies of 5.15659, 5.48556 and 5.80477 MeV
respectively.

104
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Data collected using a pulser provides a means to calibrate the ADC

offset for each channel. The offset and gain data for each channel are inserted

into a FORTRAN user routine in the sort program, and the main experimen-

tal data sorted, enabling the energy of the detected particle to be calculated.

This is however, the energy normalised to the α-particle calibration. It is

known that Silicon detectors have a nonlinear response to ions of different

Z. The difference in the pulse height of a proton and an α-particle of the

same energy has been measured in ref. [65]. In calculating the true energy

of a proton using the gain values of the α-calibration, we therefore include

a factor 0.986 difference as suggested in the aforementioned reference.

2-dimensional spectra were produced for each energy run of particle

energy versus TDC conversion. Figure 6.1 shows such a 2-dimensional en-

ergy versus time-of-flight plot for all strips in the forward angle detector.

The isolated structure in the centre is the contribution from the protons,

while the left hand side shows the β background from the radioactive beam,

uncorrelated in time as expected.

A 2-dimensional gate was taken round the proton group leaving room

at the low energy side in case low energy inelastically scattered proton events

were present. The individual strip spectra are then only incremented if an

event falls into this gate. The background due to the β tail at low energies

is therefore substantially reduced.

Strips lying at equal angles in the detector array are considered as

one entire entity, since we expect to gain no physical information by using

azimuthal (φ) angular data in this experiment. Therefore, in the spectrum

incremental procedure, events at the same angle are sorted into annular

spectra, resulting in 32 separate spectra for each energy run.
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Figure 6.1: Energy versus time-of-flight plot for the 21Na+p 880 keV/A run.

The proton detected energy is the result of energy loss through the

remaining section of the target, the mylar foil and the Silicon dead layer

in the detector. Therefore, a reverse energy loss subroutine is implemented

for each event to estimate the energy the proton would have after exiting

the target. The proton energy after passing through the mylar can be ap-

proximated by a quadratic relation over the energy range of interest (see

figure 6.2), and so the spectrum of detected protons will not reflect in a

linear way the spectrum of scattered protons. Thus a calibration using the

target edges as indicators of where the beam energy is would result in the

correct centre-of-mass energies at the high energy edge of the target, but

increasingly incorrect values towards the rear of the target. Therefore it

is important to include an energy loss correction so that the spectrum is

approximately transformed into a frame in which the proton lab energy is

linear with the centre-of-mass energy, that being the proton lab energy at
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the moment of creation within the target. Since the energy loss out of the

target is small2, and we cannot be sure where in the target the event came

from, we use the approximation that the proton energy on exit from the

target is linear with the centre-of-mass energy.

At this point the proton spectra are un-normalised and uncalibrated to

centre-of-mass energy. Figure 6.3 shows the uncalibrated and un-normalised

spectra from one annulus of the forward angle detector.

2For example, a 3 MeV proton travelling through the entire target would lose approx-
imately 30 keV, ie. 1%.
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6.2 Calibration and analysis of spectra

6.2.1 Target effects

In order to be able to calibrate the spectra to the centre-of-mass system, it is

essential to try and understand the effects caused by the use of a thick target

scan technique as described in chapter 4. In this work, the target itself has

been modeled as a top-hat function in the beam energy loss system. For

energies from the entrance beam energy down to the mean energy of the

beam at the exit of the target, it is assumed there is a uniform distribution

of target nuclei available for reaction. This can be transformed into a top-hat

function in the centre-of-mass energy system. Effects such as the reduction

of Hydrogen at the edges of the target, which could be possible, have been
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ignored in this work, and would be difficult to measure3.

The beam energy distribution can be modeled as a Gaussian with an

energy spread corresponding to approximately 0.3% of the total energy for

an average beam [60]. Therefore, we term the target function a convolution

of the beam energy distribution with the top hat function, resulting in a

trapezoidal function with edges determined by the convolution of the beam

Gaussian with a step. The straggling of the beam in the target has the effect

of redistributing the beam energies as the beam travels through it, thus the

variance of the convoluting Gaussian increases into the target, resulting in

a rear edge which is less sharp than the front edge of the target. Since the

straggling variance of a typical 21Na beam into these targets reaches values

of only around 50 keV in the lab frame, the plateau top of the target function

will remain unaffected since the width of the convoluting Gaussian is small

compared to the convolution range over the target.

The effect of reduction in beam flux through the target has been ig-

nored since the number of scattered beam particles at each target depth is

very small compared to the total incident flux. (For example a typical beam

will have only a few percent at most removed from the flux over the entire

target). The resulting effective yield function would be a multiplication of

the target function (its maximum value being unity) and the differential

cross section function.

Figure 6.4 shows the target function, where the beam is convoluted

3A suggested method to do this would be to measure the energy spectrum of protons
scattered from the target using a well defined beam in a regime where the cross-section is
known to be Coulomb. Any deficit in target nuclei at the edges should show as a shape
change in the edges of the proton spectrum. No such effect was obvious in this experiment,
although there were other effects affecting the target edges which will be discussed.
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Figure 6.4: Top-hat type function used to represent the target for a typical beam
energy (top), and the effective yield function (black) with the resonance curve used
superimposed (bottom).
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with the top-hat function, and the resulting effective yield function4 after

the resonance is multiplied by the target function. This is in effect the yield

one would measure if no straggling or energy loss occurred to the proton

after it recoiled, and the measurement was made with an ideal point-like

detector at a discrete angle.

Several effects then contribute to the further spreading of the experi-

mental data after the proton recoils from the elastic event:

1. The proton loses energy through the remainder of the CH2 target re-

sulting in a straggling distribution.

2. The proton loses energy through the mylar foil resulting in a straggling

distribution.

3. The detector dead layer further reduces and straggles the proton en-

ergy before it enters the active part of the Silicon detector.

4. Each strip subtends a finite angular range introducing a kinematic

angular spread in the proton energy.

5. The electronic noise inherent in the instrumentation and Silicon dark

current produces a further spread in the magnitude of the amplified

signal.

The effects associated with energy loss straggling can be estimated by

using the Bohr straggling formalism. In this formalism the variance in energy

results mainly from electronic collisions in the material where the resulting

4Note that y-axis values are expressed in arbitrary units
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energy distribution is Gaussian around the mean energy. For nonrelativistic

heavy particles this is given by

σ2
0 = 0.1569ρ

z2Z

A
x[MeV 2] (6.1)

where ρ, Z, A and x are the density [g/cm2], proton number, mass

number and thickness [cm] of the stopping medium, respectively, and z is

the proton number of the ion [66]. This rule only applies when the medium

is thick enough that large numbers of collisions are made and that the energy

loss is small compared to the initial energy.

The effect of angular spreading can be estimated by differentiating the

kinematic formula of the energy of a recoiling proton, and is given by

∆E = 2E tan θlab∆θ (6.2)

The electronic noise can be measured directly as the average spread

in the peak signals obtained during the pulser calibration. This is estimated

at about 8 keV in the lab for a typical channel.

Other effects such as the multiple scattering of the beam and the pro-

tons through the target and mylar can contribute to the overall experimental

resolution, as can the effect of momentum dispersion in the beam and thick-

ness variation in the mylar foil. In this work these effects, which are difficult

to calculate, have not been included explicitly. Instead, the variances of all

the contributing factors are added in quadrature resulting in an experimental

Gaussian resolution with variance given by

σexp =
√

σ2
CH2

+ σ2
mylar + σ2

deadlayer + σ2
noise + σ2

θ + σ2
u
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where σu represents unknown factors such as multiple scattering, beam

dispersion and thickness variation.

6.2.2 Simulation of experimental data

In order to investigate further the effect of different physical events on the

experimental resolution of the final spectra, a Monte Carlo simulation was

constructed to simulate the experimental data. The details of the exper-

imental resolution determination procedure are presented in Appendix C.

The aim of this simulation was to find an empirical method of determina-

tion of the experimental resolution using fits of the high energy edges of the

proton spectra.

Table 6.1 shows the resolution parameters resulting from Gaussian fits

of the spectrum edges (from here on called target edges) and the resonance

fits to the data for each beam energy used in the simulations. Also tabulated

are the beam energy spreads used in the simulation5.

It can be seen that the spread of the target edges increases with beam

energy, which is expected due to the increasing energy spread of the beam

involved. The resolution6 determined from the fit of the resonances to the

simulated data show only small variation and no systematic trend, and can

be considered constant to within 0.2 keV. It can also be seen that the target

edge spread is not given by the quadratic sum of the resonance spread and

the beam spread, as might be expected, but instead is larger. This point

5These beam energy spreads are 1.5 times larger than the actual spreads in the exper-
iment, which are interpolated from Figure 20. in ref. [60].

6Defined as the width of the Gaussian required to convolute with the resonance curve
in order to fit the data.
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Beam Energy Target Edge Resolution Fit Beam Sigma
(MeV/A) Sigma (keV) Sigma (keV) (keV)

0.69 7.42 5.75 2.14
0.88 8.09 5.82 2.95
0.99 8.33 5.72 3.46
1.114 8.95 5.75 4.23
1.240 9.26 5.83 4.74
1.340 9.75 5.68 5.30
1.440 10.31 5.86 5.89
1.560 11.01 5.73 6.62

Table 6.1: Various resolution parameters resulting from fits on simulated exper-
imental data.

is important and attention will be paid to it in section 6.2.5. The results

of the simulation are used in section 6.2.5 to estimate the spreading effects

present in the real experimental data.

6.2.3 Calibration to centre-of-mass system

In order to use the target edges as an initial means of calibration, we fit the

edge of each individual annular spectrum with a Gaussian. This results in a

series of values of centroid position7 with an associated error of around ±2

channels8. This corresponds to ±10 keV in the proton lab frame.

The proton energy is plotted against the centre-of-mass energies of the

beam. Table 6.2 shows the values in the 21Na + p centre-of-mass system of

the beam energies. The combined systematic error in the beam energy value

is estimated to be about ±5 keV/A [67]. Since the proton energies have been

corrected for energy loss through the mylar and Silicon and not the target

7Taken from the mean plus half the full width at half maximum value of the Gaussian
fit

8Estimated by assuming that when making the Gaussian edge fits, will choose the
correct fit lower limit to within ±3 channels
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Figure 6.5: Plot of experimental resolution parameters resulting from fits on the
simulated data and beam resolution used in simulation.
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material, the form of the proton energy versus the centre-of-mass energy

relationship is expected to be non-linear by a small amount. Therefore

the target edge data are fitted with a polynomial of order 2 for each annular

spectrum. Figure 6.6 shows an example of a typical calibration curve for one

detector annulus. The order 2 coefficient is small, and so the fit is almost

linear. The quadratic relations derived from the fits are used to transform

the spectra into the centre-of-mass frame. The quadratic fit is of the form

Ecm = aE2
lab,det + bElab,det + c

The fits also result in a set of errors for the parameters a, b and c.

The error in the centre-of-mass calibration is then given by the propagation

of errors formula:

σ2
Ecm

= σ2
a

(

∂Ecm

∂a

)2

+ σ2
b

(

∂Ecm

∂b

)2

+ σ2
c

(

∂Ecm

∂c

)2

(6.3)

Using typical values for the parameter errors, this gives a centre-of-

mass energy error at a typical centre-of-mass energy as ±10 keV. This is the

error in the centre-of-mass given that actual beam energies could each be

incorrect relative to the chosen beam energy by an amount ±5 keV/A.

6.2.4 Normalisation of thick target runs

In order to deduce resonance parameters from the fitted data, it is essential

to fit all of the separate thick target runs simultaneously. This ensures that

all resonances present are being included in the fit and therefore interference

between all resonances is taken into account using the R-Matrix formalism.
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Beam energy (MeV/A) Centre-of-mass energy (MeV)
0.69 0.6636
0.80 0.7694
0.88 0.8463
0.99 0.9521
1.144 1.1003
1.240 1.1926
1.340 1.2888
1.440 1.3849
1.560 1.5003

Table 6.2: 21Na+p centre-of-mass system beam energies.
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Figure 6.6: Example of centre-of-mass calibration using target edges.
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The spectra from separate energy runs are un-normalised due to the

different durations and beam intensities used. The sector of the backward

angle detector which was unprotected by the mylar foil was used as a means

of approximate normalisation. The recoil 12C and proton peaks detected in

this low-gain sector were used to estimate the number of incident ions during

each run, correcting for the effect of Hydrogen depletion in the target. This

normalisation has an estimated associated error of around 10% due to the

uncertainties involved in the determination of the integral counts under the

12C and proton peaks, and by uncertainties in the target thickness. Using the

target model described in section 6.2.1, we can say that since neighbouring

target runs overlap in terms of energy by a significant amount, each run

must match its neighbour at the point of overlap. Therefore, adjustments

within the estimated 10% error in normalisation can be made until the runs

match with each other. These adjustments can be made in the data fitting

program. The data are also normalised to take into account the different

solid angular areas of each detector annulus.

6.2.5 Determination of experimental resolution

In order to make a correct fit to the experimental data with an appropriate

functional form of the theory, the degradation of the yield curve by experi-

mental effects needs to be considered. The processes of proton straggling and

angular kinematic broadening described previously are the major contribu-

tors to the degradation of the spectra. These effects have been considered in

other heavy-ion on proton elastic scattering experiments [59] [57], in which

the resultant total degradation of the proton spectrum was modeled by a
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Gaussian convolution of the theoretical yield curve, the Gaussian having

a constant width over the range of the target involved. The data fitting

method was then to fit the convoluted yield curve rather than to try and

perform difficult deconvolutions of the data. This is essentially the method

employed in this work.

Slight differences in approaches between this work and refs. [59] and

[57] were introduced in order to try and improve the data fitting. Essen-

tially, the experimental resolution was empirically determined via the study

of the Monte Carlo simulation data and the experimental proton spectra.

Due to the form of the proton spectra upper edges, it is expected that the

shape of the beam energy distribution and the overall experimental resolu-

tion determine the shape of this edge. The target edge fits referred to in

table 6.1 were used to deduce an empirical relationship between the beam

spread, experimental resolution, and target edge fit width. As mentioned in

section 6.2.2, the target edge spread, σe is not the quadratic sum of the other

two parameters, but instead larger. Therefore, an unknown spread function,

f(σbeam) was introduced such that σ2
e = f 2(σbeam) + σ2

exp, since for a given

experimental setup, the edge shape should only vary significantly as a func-

tion of beam resolution. Also, as seen in the resonance fits to the simulated

data, the experimental resolution does not vary strongly with beam energy

since Bohr straggling is an energy-independent process in this scenario.

Figure 6.7 shows a linear approximation to the function f(σbeam) which

was employed since the true functional form of the relationship is unknown.

The errors in this fit arise mainly from the uncertainty in the simulation

fits themselves. The next step is to use the values of the target edge widths

extracted from the real data to estimate the experimental resolution using:
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σexp =
√

σ2
e − f 2(σbeam) (6.4)

In this process the average values of σe over the first seven strips of

the detector are used9, and converted into centre of mass values. The prop-

agation of errors gives the overall uncertainty in the estimated experimental

resolution as:

∆2
exp = ∆2

e + (∆p1
σbeam + ∆p2

)2 (6.5)

where p1 and p2 are the slope and offset of the linear function, f . The

major contribution to the errors however is the uncertainty in the target

edge spread ∆e. These uncertainties were found to be very similar over

different angles of a given energy run, and so the average of ∆e from a

sample of strips in each run was used in the estimation of ∆exp. The values

of the beam resolution used were estimated by interpolating the relationship

between beam energy and beam resolution from ref. [60], where the values

are quoted for a beam of emittance εz = 1.5 keV/A·ns, and scaling for a

beam emittance of 1.2 keV/A·ns as used in the experiment. The resulting

estimated experimental resolution parameters and associated errors can be

seen in table 6.3.

6.2.6 Calibration using 21Ne+p resonance

The experimental run using the 21Ne beam resulted in data being collected

for an s-wave resonance at Ecm ' 733 keV. This resonance has been exten-

9The angular uncertainty does not increase significantly over this angular range.
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Figure 6.7: Linear approximation to functional dependence of the unknown func-
tion, f, with beam energy resolution.

Beam energy (MeV/A) Estimated exp. resolution (keV)
0.69 4.46 ± 0.54
0.80 4.99 ± 0.68
0.88 5.07 ± 0.73
0.99 5.73 ± 0.77
1.144 5.75 ± 0.71
1.240 5.86 ± 0.81
1.340 5.83 ± 0.86
1.440 6.14 ± 1.11
1.560 9.32 ± 1.52

0.88 (21Ne+p) 5.38 ± 0.66

Table 6.3: Estimated experimental resolution values at the upper edges of the
proton spectra.
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sively studied in previous work [68] [63] [69] [70] [71] [72].

The adopted value for the resonance energy is taken from the results

of ref. [68], and is that also used in ref. [72]. The only other indepen-

dent measurements of the resonance energy using either 21Ne(p,p)21Ne or

21Ne(p,γ)22Na measurements are in refs. [63] and [69], who give values of

736.6 keV and 733.2 keV respectively10. Ref. [69] agrees within errors with

the adopted value. The accelerator used in this work was calibrated us-

ing the reactions 13C(p,γ)14N and 27Al(p,γ)28Si , while ref. [63] used the

reactions 14N(p,p), 15N(p,αγ) and 19F(p,αγ).

The adopted total width of the state is Γ = 4 ± 0.4 keV, while the

only information available on the proton partial width of the state is given

in ref. [63], where it was deduced as being Γp = 2 ± 1 keV. However,

it is interesting to note that the total width is the result of (p,γ) yield

experiments, while the proton width was deduced from fitting elastic and

inelastic 21Ne+p scattering data. The latter reference seems to have been

ignored in the major compilations, and yet is the most relevant experimental

method to be compared to the elastic scattering of this work.

Data from the 880 keV/A 21Ne+p run, which contains the 733 keV

resonance, were normalised and calibrated using the methods described in

the previous sections. A simple Breit-Wigner formalism similar to that used

in the Monte Carlo simulations was used to make a preliminary fit to the

resonance. The partial width was set at 2.7 keV, as it was found that this

achieved the best fit. The normalisation constant and convolution width

(which was set constant over the energy range of the target) were left as free

10Actual values quoted in these references were in terms of proton beam energy with
values of 772±1 keV and 768.4±1.2 keV respectively.



Chapter 6. Data Analysis 123

parameters along with the resonance energy. The purpose of this preliminary

fit was to find small magnitude correction terms between annular spectra in

terms of energy and normalisation. Figures 6.8 and 6.9 show the fit results

for the first fifteen annuli of the forward angle LEDA detector. The mean

values of the resonance energy and normalisation over all these individual

fits were taken, and corrections made in the calibration equation to account

for these shifts. The best-fit values of the convolution parameter vary, but

the average value over all the 15 strips is 5.39 keV, which agrees well with

the average convolution determined for the 21Ne+p target edges of 5.38 keV.

Because there is another resonance close to the 733 keV resonance, it

is insufficient to derive the actual resonance properties using a Breit-Wigner

formalism. The nearby11 s-wave resonance lies at 670 keV, and is known

to have a partial width Γp ≤ 2 keV from ref. [63]. The single-channel R-

Matrix code described in the next chapter was used to make a fit to the two

21Ne+p resonances using the experimental resolution parameters determined

in section 6.2.5. The fit was made over fifteen angles of the forward LEDA

detector, rejecting the sixteenth due to bad data caused by instrumentation

problems in some of the outer annulus detectors. LEDA 2 data was not

included in the fit due to the fact that the fitting program is only designed

to handle up to sixteen data sets at one time.

The fit resulted in a global reduced chi-squared of χ2
ν = 1.192. The

R-Matrix state energy corresponding to the 733 keV resonance was E1 =

735.06 ±0.44 keV. Because the ` = 0 boundary condition was evaluated at

11Note that there is also a p-wave resonance lying at 684 keV, which was not observed
in this experiment but which is known to have a total width of Γ = 2.5 ± 0.5 keV. This
resonance was not included in any of the fits made in this work. It is thought that this
resonance was not observed due to its small strength in the elastic channel.
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Figure 6.8: Breit-Wigner fits to the 21Ne+p 733 keV resonance for the inner
eight annuli of the forward angle detector.
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E = 735.05 keV, the state energy is identical with the resonance energy to

within 0.01 keV.

The difference between the adopted value of the resonance energy and

the fit value is 2.36 ± 0.94 keV, taking into account the ±0.5 keV error on

the adopted value. This difference was then used to apply offset corrections

to the 21Ne+p and 21Na+p data.

6.2.7 Inelastic corrections

Peaks on the low energy sides of the proton spectra were identified as protons

from inelastic scattering with the first excited state of 21Na at 331.93 keV. In

order to correct kinematically into the incident centre-of-mass energy frame,

the following procedure was adopted:

The spectra were calibrated as were the elastics, using the quadratic

target edge relations derived from the target edges, and using the same

calibration corrections derived from the 21Ne+p fits from above. This places

the data in a frame of elastic centre-of-mass energy events. By doing this

we are “pretending” that the protons are actually from an elastic event, in

order to work back from the quadratic fit what their actual energies were

after scattering. No physical properties of the inelastic events are changed

in this way, we are simply using the calibration mapping to infer the actual

proton energies in the primary spectrum.

The relation between the energy of an inelastically scattered proton

and the incident centre-of-mass energy, E, is given by (see Appendix B):
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Ep
′ =







cos θlab

(

m1+m2

m1

E
)1/2

+
(

cos2 θlab
m1+m2

m1

E − (1 + m2/m1)Ex

)

(1 + m2/m1)2







2

(6.6)

This can be rearranged for E, allowing the centre-of-mass energy in

the entrance channel of the inelastic event to be inferred. The spectra were

corrected in this way, and where required, normalised to the corresponding

thick target data.
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Results and Interpretation

In this chapter the specific procedure of fitting the data using a single-

channel R-Matrix code is described. The code is used with the 21Ne+p

scattering data to extract a width and resonance energy corresponding to

a T=1 state in 22Na. The 21Na+p scattering data is then analysed in an

attempt to extract widths and resonance energies corresponding to states in

22Mg. The inelastic scattering data is also considered, leading to estimations

of resonance total widths where elastic assignments are not possible.

Using the information gained from the analyses, the 22Mg nuclear

structure aspects are briefly discussed, with reference to each state observed

in the experimental data. A discussion of the astrophysical implications of

these 22Mg structure properties then follows.

128
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7.1 Development of single-channel R-Matrix

code

The single-channel R-Matrix code used in this work was based on an existing

code which included the spin-zero formalism of ref. [73]. The code was

largely modified and customised to fit the particular physical scenario of

21Ne or 21Na scattering on protons. Appendix B contains the derivation of

the single-channel ` = 0 form of the general R-matrix equations from ref.

[14], and the resulting equations were used to calculate the energy dependent

differential cross-section in the code.

The experimental resolution values determined in the previous chapter

were used in the code to provide a physically correct form of modification

of the theoretical yield curve, with the width of the convoluting Gaussian

varying with energy, depending on which beam energy run the data comes

from.

An arbitrary boundary energy Ebnd is chosen at the beginning of the

program, and the values of the penetration, P, and shift, S, are calculated at

this energy. The boundary parameter is defined as B ≡ S(Ebnd). All values

not dependent on the R-Matrix parameters are then calculated for each

data point, such as the Sommerfeld parameter, the wavenumber, penetration

and shift, and the hard-sphere and Coulomb phase-shifts. These values are

associated with their respective data points.

At this point the main program calls the minimisation routine to min-

imise the χ2 of the cross-section with respect to the data points, using the

single-channel expressions. Inside the subroutine, for each data point, the

cross-section is calculated using the relevant Coulomb, Resonant and Inter-
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ference terms, and combined with the convolution and a free normalisation

parameter. The χ2 is calculated, and the results passed to the minimisation

routine.

Any number of free parameters can be included in the fit. In this

work the main free parameters were the state energies and reduced particle

widths of the R-Matrix. The `-value of each resonance and therefore the

spin-parity assignment of each state in the fit is set as an input parameter.

A normalisation free parameter is required to ensure matching of the spectra

with the absolute cross-section values.

Once the minimisation has occurred, the state energies and widths

are transformed into the resonance energies and proton widths using the

formalism of ref. [74]. It can be stated that for every set of R-Matrix

formal parameters (state energies, widths) associated with a given boundary

parameter, there exists a complementary set of parameters associated with

a different boundary parameter which result in the same physical values of

the cross-section. This transformation is done by constructing a matrix with

the elements [15]

Cλµ = Eλδλµ −
∑∑∑

c

γλcγµc(Bc − B
′

c) (7.1)

where λ, µ denote state properties and c is the channel index. B′

and B

represent the new basis and current boundary parameters respectively. Since

we fit with a single-channel formalism, the sum is dropped. The eigenvalues

and eigenvectors Dλ,K of the matrix are calculated, so that the new set of

R-Matrix parameters are given by
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E
′

λ = Dλ, γ
′

= Kγ (7.2)

The state energy is equal to the resonance energy when the boundary

parameter is equal to the shift function evaluated at the resonance energy.

Thus the procedure is to iterate the boundary energy, calculating the new

values of state energy and width, until the state energy is equal to the

boundary energy for that resonance. Then the procedure is repeated for the

next resonance etc.

The observed proton width of a state is given by equation 2.35, and

so on convergence of the state energy and boundary energy, the proton

width is calculated using the current value of the reduced width. Note

that other methods exist [75] for multi-state boundary calculations which

facilitate the use of the observed widths and energies in the calculation

rather than the formal parameters. However, these methods involve the

handling of prospectively large matrices within the program substructure.

Approximations to the above method also exist for the R-Matrix single level

approximation, where the observed widths and energies can be calculated

iteratively without the construction of large matrices [76].

7.2 Data fitting: 21Ne+p

The single-channel R-Matrix code was first used to re-fit the calibrated and

corrected 21Ne+p data over the fourteen inner angles. Values of the min-

imised χ2
ν for different convolution parameters were investigated around the

mean value of 5.38 keV estimated in section 6.2.5. Table 7.1 shows the resul-

tant values for these fits. In column 1, the actual value of the experimental
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resolution at the target edge entered into the fitting program is shown. Col-

umn 2 shows this same value in terms of its difference in units of σ, the

standard deviation error calculated from the target edge fits, from the mean

value. It is seen that the resonance energy as calculated using the bound-

ary transformation techniques detailed in the previous section, is constant

over this range of input convolution parameters. Figure 7.1 shows the χ2
ν

and proton width variation for these different values of convolution param-

eter. It can be seen that the χ2
ν function is minimised at around a value

of σexp = 5.49 keV, corresponding to a value of Γp = 2.51 keV. The proton

width varies monotonically with the convolution parameter. It is expected

that the error in Γp may be a complicated function of all the variables in-

volved in the fit. However, the fact that the width varies monotonically with

the convolution parameter, and the χ2
ν follows a valley-like function, allows

the error in Γp to be associated with the error in σexp.

For this series of fits, the convolution parameter which minimised the

χ2
ν was σexp = 5.49 keV. The 1σ error values of σexp are given as 4.72 keV

and 6.04 keV, so that the values of Γp corresponding to these limits provide

our 1σ error points for proton width. Thus, the value of the proton width

of the 732.7 keV resonance can be written as Γp = 2.5± 0.2 keV.

The results of these fits confirm that the calibration offset of the data

using the previous R-Matrix fit is succesful in that the adopted resonance

energy value of 732.7 keV is derived from the fits. Also, the fitted proton

width agrees with the published value within the 1 keV error associated with

that value. The results also add confidence to the method of determining the

experimental resolution using the target edges, showing that the estimated

value is very close to that which provides the best fit.
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σexp (keV) σexp − σmean ER (keV) Γp (keV) χ2
ν

4.06308 −2σ 732.7 2.155 1.954
4.39308 −3σ/2 732.7 2.215 1.717
4.72308 −1σ 732.7 2.331 1.397
5.05308 −σ/2 732.7 2.425 1.227
5.21808 −σ/4 732.7 2.447 1.201
5.38308 0 732.7 2.470 1.198
5.49308 +σ/6 732.7 2.509 1.170
5.54808 +σ/4 732.7 2.544 1.174
5.60308 +σ/3 732.7 2.550 1.179
5.71308 +σ/2 732.7 2.568 1.195
6.04308 +1σ 732.7 2.657 1.269
6.37308 +3σ/2 732.7 2.693 1.380
6.70308 +2σ 732.7 2.808 1.558

Table 7.1: 21Ne+p R-Matrix fit results.

Note that although the 670 keV resonance was included in the fit, very

few of the data points actually lie over this resonance. Consequently, the

values of the resonance energy and width for this state have been omitted

from this work. It is expected that an additional thick target run of 150-200

keV lower beam energy would be required to provide data points sufficient

to cover the region of this resonance, enabling a determination of energies

and widths.

In the literature, in particular, the compilation of ref. [77], there is an

ambiguity present in the spin-parity assignments in the compound nucleus

22Na. The particular levels of interest to the 21Ne+p fit, as mentioned above,

correspond to excitation energies of Ex=7239 and 7277 MeV respectively. In

ref. [77], these have been assigned spin-parities of (2+ to 4+) and (1−,2+) re-

spectively. These assignments are mainly based on studies of (p,γ) resonance

strengths from, for example, ref. [70]. This generally involves extracting Jπ

from the resonance strength, ωγ, However, the compilations have completely
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Figure 7.1: Variation of χ2
ν and Γp with convolution parameter for 21Ne+p 733

keV resonance.

ignored previous work done on 21Ne+p scattering, that of ref. [63]. In that

particular experiment, no inelastics were observed, suggesting either a closed

inelastic channel or small partial widths for inelastic scattering. The partial

γ-width is small also, and to first order, the total width is mostly made up

from the elastic partial width. In ref. [70], inelastic scattering was observed

for these resonances, but with relatively small yields. This leads to the as-

sumption that the proton partial width is indeed close to the value of the

total width, and a single channel formalism is justified in fitting the 21Ne+p

resonances in this work.

The spin assignments of ref. [63] were based on fits to elastic reso-

nances in 21Ne+p, taking into account the resonance shape changes over a

wide range of angles. Protons of angular momentum `=0 were seen to pop-

ulate the states of interest, leading to tighter restrictions on the possibility
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Figure 7.2: Yield curves for the 21Ne+p R-Matrix fits against the experimental
data for annuli 0-7.
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Figure 7.3: Yield curves for the 21Ne+p R-Matrix fits against the experimental
data for annuli 8-14.
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of the state assignments. In this work, I have chosen to take into account

the spin assignments made in that reference, being both (1,2)+, based on

the fact that an s-wave proton can only populate states in 21Ne+p of these

spin-parity combinations. Since the problem of 21Na+p scattering involved

the same spin-parity combination restrictions, it is prudent to refer closely

to the resonant properties of the T=1 analogue levels in 21Ne+p scattering.

7.3 Data fitting: 21Na+p

After the corrections had been applied to the elastic and inelastic data, the

result was a collection of 32 elastic excitation functions and 16 inelastic

excitation functions1. Figure 7.4 shows representative elastic and inelastic

excitation functions for the forward angle detector. Excitation functions

for other angles in the same detector were extremely similar, a result of

the slow kinematic variation in the outgoing proton energy. Three strong

broad resonances of the order of tens of keV wide are seen in the elastic

spectrum, and are hereby referred to as resonances 1, 2 and 3, starting

from the lowest energy. In the inelastic excitation function, three peak-like

structures are seen. The lowest energy pair of peaks corresponds to the 1170

keV/nucleon thin target run, designed to cover the region corresponding to

elastic resonance 2. The small peak on the right hand side of this pair is

closely matched in energy with the centre of elastic resonance 2, suggesting

this peak is an excitation of the same state. The larger peak of the pair is

at a lower energy than the centre of elastic resonance 2. It corresponds to

1The inelastic data from the backward angle detector was deemed too broadened to
be of significant benefit to the analysis.
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inelastic excitation of a state which has weak or nonexistent excitation in the

elastic channel. These peaks have been labelled inelastic resonance 2a and

2b to refer to the fact that they are closely associated to elastic resonance

2. The large inelastic peak marked inelastic resonance 3 results from the

1440 keV/nucleon thick target run. Because this resonance is broad, the

thin target run at 1420 keV/nucleon did not cover the whole range of the

peak. There is however, a background from the elastic spectrum target edge

on which this peak sits, making the peak appear stronger.

In order to begin fitting the elastic data, consideration has to be given

to the following. 1) Is the use of an s-wave only formalism justified given the

physical constraints on the 21Na+p system, and the phenomenology of the

data? 2) Is the use of a single-channel formalism justified given the qualities

of the inelastic data?

The 21Na+p system has an incident channel spin of s=1,2, given that

the ground state spin-parities of 21Na and 1H are 3/2+ and 1/2+ respectively.

The parity of the incident channel is defined as positive. The allowed spins

of the compound nucleus states are then found by vector addition of the

incident `-value of the system and the channel spin, with the parities given

by π = (−)`. The maximum energy in the centre-of-mass used in this

experiment was around 1.5 MeV. Using this value, the maximum probable `-

value in any reaction can be estimated with the angular momentum relation

Lz = `~ = |~r × ~p|, which gives the maximum `-value as

` ≤ r
√

2µE

~
(7.3)

where µ is the reduced mass and r is the sum of the nuclear radii
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Figure 7.4: Representative elastic and inelastic excitation functions from the
forward angle detector, showing three strong elastic resonances and three inelastic
peaks.
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involved. Using r=4.51 fm, this gives ` ≤ 1.18. This is a semi-classical

estimate, and suggests that ` ≤ 1 at these low energies. To take into account

the possible contribution of peripheral reaction beyond the grazing radius,

`-values up to ` = 2 are considered. One can also consider the Wigner limit

for the width of a single particle state [40], which is the largest width a pure

single particle state can have based on penetrability arguments, and is given

by:

ΓW
p =

3~
2P`(E = ER, a)

µa2
(7.4)

where a is the channel radius, given by 1.2(A
1/3
1 + A

1/3
2 ), µ is the

reduced mass, and P` is the penetrability for a given `-value, energy and

channel radius. Using this argument for E=1.5 MeV arrives at the following

Wigner limits:

` P` ΓW
p (MeV)

0 0.138 0.882

1 4.424 ×10−2 0.283

2 4.929 ×10−3 3.151 ×10−2

3 2.421 ×10−4 1.548 ×10−3

Since the states are likely to be more complicated than single-particle

states, the widths will be some fraction of the Wigner limit. This makes

it unlikely to see states corresponding to ` = 3 based on sensitivity and

strength arguments, especially at lower energies, where for example at E =

0.825 MeV, the Wigner limit is more like ΓW
p = 0.03 keV.

Considering up to ` = 2, this then makes the likely possible spin-

parities resulting from combinations of ` and s as in table 7.2.
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` s Jπ

0 1 1+

2 2+

1 1 0−

1−

2−

2 1−

2−

3−

2 1 1+

2+

3+

2 0+

1+

2+

3+

4+

Table 7.2: Incident spin and orbital angular momentum combinations for
21Na+p.

Inelastic scattering to the first excited state of 21Na with Ex=332 keV

and Jπ = 5/2+ can be considered by the allowed outgoing orbital angular

momentum and channel spin combinations. Choosing only combinations

with ` and `′ less than or equal to 2 results in the values given in table 7.3.

Thus, for example, a 1+ state formed via an incident elastic channel at

these energies is semi-classically unlikely to decay via an inelastic channel due

to the requirement of a large outgoing orbital angular momentum, whereas a

2+ state formed via the same mechanism can decay via the inelastic channel

with `′ = 0. This assumption becomes important in the consideration of

spin-parity assignments to be included in any fit.

Armed with this information, s-wave single-channel fits were investi-

gated for the elastic excitation functions over a range of angles. A single-
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` s Jπ s′ `′

0 1 1+ 2 2
3 2

2 2+ 2 0
2 2
3 2

1 1 0− X X
1− 2 1
2− 2 1

2 1
2 1− 2 1

2− 2 1
3 1

3− 2 1
3 1

2 1 1+ 2 2
3 2

2+ 2 0
2 2
3 2

3+ 3 0
2 2
3 2

2 0+ 2 0
3 0
2 2

1+ 2 2
3 2

2+ 2 0
2 2
3 2

3+ 3 0
2 2
3 2

4+ 2 2

Table 7.3: Possible exit-channel spin and orbital angular momentum combina-
tions for 21Na+p inelastic scattering to the first excited state.
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channel, spin-zero formalism fit was investigated at an earlier stage in this

analysis [78], finding preliminary estimates of resonance energies and widths

which are highly formalism-dependent. In the spin-zero approximation, the

effective spin statistical factor used is equal to 1. This incorrectly represents

the relative intensity of neighbouring resonances of different Jπ, leading to es-

timates of resonance widths and energies which are likely to be substantially

different than the actual properties of the states. Thus we have included the

effects of spin-dependence in this formalism, leading to a more correct and

physical interpretation of the data.

Fits were investigated using the resolution parameters derived previ-

ously. It was found that the data required the spin-parity assignments of

resonance 1, Jπ = 1+ and resonance 2, Jπ = 2+ to ensure a good fit, other

combinations of Jπ unsatisfactorily reproducing the data. This assignment

is strengthened by the inelastic constraints mentioned above, combined with

the fact that no inelastic resonances were seen in the region of resonance 1,

while resonance 2 clearly does have resonant inelastic structure associated

with it.

An s-wave investigation of resonance 3 concluded that it was difficult

to reproduce the shape of this resonance with either Jπ = 1+ or 2+ assigned

to the state in the fit. The main problem arises from the inability to generate

both the width and the amplitude, with any reasonable combination of width

or the known possibilities of experimental resolution. This lends to the

theories that this resonance may either proceed via a higher order ` than

the others, or proceed via an s-wave and have its elastic amplitude severely

damped by the broad strong inelastic contribution.

Figure 7.5 shows a single angle R-Matrix fit of the 4.774◦ data with
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Figure 7.5: Single-channel s-wave R-Matrix fit to 4.774◦ data using experimental
resolution parameters derived from target edges.
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three s-waves. Resonances 1 and 2 were fitted with Jπ = 1+ states, and

resonance 2 with a Jπ = 2+ state. The experimental resolution parameters

used were those listed in table 6.3. The fit was made with the boundary

energy set to 0.825 MeV, and the global chi-squared per data point was χ2
ν =

1.477. A large contribution to this was the fit in the regions of resonances

2 and 3. The chi-squared per data point over the region of resonance 1 was

χ2
ν = 0.900. This indicates that the fit for resonance 1 is satisfactory, but

problems arise in the fits for the other two resonances.

Figure 7.6 shows a close-up of each resonance for the attempted s-wave

only fit. Resonance 1 has been reproduced well in shape by the fit, and is

therefore justifiably described by the s-wave fit according to the constraints

detailed in the previous section.

Resonance 2 has not been so well reproduced by the fit. Here, the

R-Matrix curve is narrower in extent compared to the data. However, at the

minimum of the data there seems to be a shape structure which suggests

possible interference from another resonance. This would be consistent with

the inelastic data which suggests a dual resonance structure in this energy

region. Since the inelastic strengths are non-zero for these resonances, it is

concluded that a single-channel s-wave only fit cannot be used to extract

the width of the resonances in this region.

Resonance 3 bears a resemblance to an s-wave in some respects, but

is not reproduced extremely well by the fit. The large strength of the in-

elastic channel for this resonance suggests the need for a multi-channel fit

as with resonance 2. Also, in this fit, an extra normalisation adjustment

was introduced in order to facilitate the attempted s-wave fit. However, the

adjustment seems to introduce a small mismatch in the data between the
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Figure 7.6: Close-up of best-fit R-Matrix curve for the three separate resonances
for an attempted s-wave only fit .
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1340 keV/u and 1440 keV/u runs, giving the illusion of a small peak at

around 1220 keV. When the single-channel fit is attempted without the ad-

justment, the minimum of the resonance cannot be reproduced. Therefore,

in all subsequent fits, the data was left unadjusted pending a multi-channel

treatment.

7.3.1 Width and energy extraction of elastic resonance

1

In order to extract the best-fit proton width and resonance energy from

resonance 1, the variation of the chi-squared was investigated around the

region of the derived experimental resolution parameter using data from

twelve angles. This was achieved by fixing the parameters of resonance 2

and 3, and allowing the parameters of resonance 1 to vary, for different

values of the experimental resolution at the target sections in the region of

the resonance. The radius was also set at several particular values in order

to find the value of channel radius for which the data is best represented.

Figure 7.7 shows the variation of the global chi-squared per data point

with the experimental resolution in the region of resonance 1 when the chan-

nel radius is set to ac = 5.3 fm, which corresponds to 1.4(A
1/3
1 + A

1/3
2 ), as

suggested in ref. [14]. The units on the x-axis are in terms of multiples of

the error in the experimental resolution parameter. It can be seen that there

is a definite minimum close to σ = σexp + (1/5×∆σ) where ∆σ is the error

on the experimental resolution parameter, σexp.

The multi-angle χ2 behaviour for different values of the channel radius

around the value ac = 5.3 fm was investigated by fixing the experimental
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Figure 7.7: Variation of chi-squared with the experimental resolution parameter
for resonance 1 with a channel radius of 5.3 fm .

resolution and the radius over resonance 1 and performing a fit. This was

made for several values of ac from 4.0 fm to 7.0 fm, and several values of

the experimental resolution. The average χ2
ν is calculated over the region of

resonance 1, and this information is then used to interpolate values on a χ2
ν

surface over the resolution-radius space. The minimum χ2
ν was found to be

between the values 5.1 ≤ ac ≤ 5.5 fm and for σ = σexp + (1/5×∆σ).

Figure 7.8 shows the 3-dimensional interpolated χ2 surface over the

region of resolution and radius values considered. The shallow minimum

around ac = 5.3 fm can be seen as the blue area. The best-fit resonance 1

internal parameters for this fit were:
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Figure 7.8: 3-dimensional χ2 distribution of twelve angle fit in radius-resolution
space.

Channel Radius ac 5.3 fm

Boundary Energy Eb 0.825 MeV

Pole Energy E1 0.82449 ± 0.00008 MeV

Reduced Width γ1 0.68411 ± 0.00278 MeV1/2

Reduced Width On-Resonance γ0
1 0.68385 ± 0.00278 MeV1/2

The above values result in a partial proton width of Γp = 13.6 ± 1.4

keV. The errors here have taken into account the variation in this value due

to the uncertainty in the resolution parameter, the radius value, and also

the errors introduced by fitting over twelve angles due to differences in the

data. The resonance energy resulting from the boundary transformation

is ER = 824.6 ± 1.5 keV, where the error takes into account both the fit

uncertainties and the calibration error.
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The results of these fits can be seen in figures 7.9 and 7.10. The

normalisation constant used in the fitting program to shift the R-Matrix

cross-sections in units of millibarns/steradian into the arbitrary yield units

was found to be 1.8727. Figure 7.11 shows the excitation function for θlab =

4.774◦ in units of mb/Sr.

7.3.2 Estimation of resonance parameters using in-

elastic peaks

The inelastic excitation function was summed over all 16 angles of the for-

ward detector, and was used to estimate the resonance energies of the peaks

contained therein. The two lower energy peaks were treated as a doublet and

so were fitted simultaneously as the sum of two Lorentzians. Figure 7.3.2 (a)

shows the best fit superimposed on the data. The free parameters were the

centroid energy, the width, and the strength of each Lorentzian peak. The

fit resulted in the centroid energies of 1079± 8 keV and 1107± 11 keV re-

spectively. The errors are linear combinations of the fit errors, the spectrum

shift error due to the 21Ne+p calibration, the differential calibration error

and the errors induced by transformation between incident centre-of-mass

energy, detected lab energy and inelastic centre-of-mass energy frames.

The same fit procedure for the higher energy inelastic resonance re-

sulted in a resonance energy of 1279 ± 9 keV. Note that some points were

omitted from the fit as can be seen in figure 7.3.2 (b), due to the uncertain

nature of the spectrum background contributions around the resonance.

The Lorentzian widths used in the fits for these inelastic resonances

can be used as an estimation of the total width of the resonances. Using
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Figure 7.9: Yield curves for the 21Na+p R-Matrix fits against the experimental
data for annuli 0-7.
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Figure 7.10: Yield curves for the 21Na+p R-Matrix fits against the experimental
data for annuli 8-11.
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Figure 7.11: R-Matrix excitation function for 4.774◦ in units of mb/Sr.
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(a) Rebinned summed inelastic data from 1170
keV/nucleon thin target run, fitted with a double
Lorentzian structure to extract centroid energies.
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Figure 7.12: Summed rebinned inelastic proton spectra.
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these values, and correcting for the convolution effects, we arrive at the

following values for the total width:

Resonance energy (keV) estimated width (keV)

1079 ± 8 9 ± 3

1107 ± 11 49 ± 12

1279 ± 9 61 ± 11

The errors are large in the estimated resonance widths, and would be ex-

pected to be reduced during a multi-channel R-Matrix fit. In such a fit, the

elastic and inelastic data would constrain the parameter set of each other,

leading to tighter restrictions on the fitted parameter values. It also allows

scope for corrections to the spectra such as allowing the inelastic data set to

shift in energy and magnitude to determine if the fit relative to the elastic

resonances is improved by this.

7.4 Discussion of 22Mg nuclear structure and

the T=1 analogue system

In total, four resonances in the 21Na+p system were discovered in the en-

ergy region covered by this experiment. The values of the widths and/or

resonance energies of these are summarised in table 7.4.

7.4.1 825 keV resonance

The 825 keV resonance was found to have a satisfactory fit with a single-

channel s-wave formalism. The spin-parity possibilities were Jπ = 1+, 2+,

but the best fit was found for Jπ = 1+. This makes the state unnatural
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Resonance Excitation Total (p,p) (p,p′) Jπ

Energy (keV) Energy (keV) Width (keV)
824.6 ± 1.5 6326.6 ± 3.0 13.6 ± 1.4 X 1+

1079 ± 8 6581 ± 10 9 ± 3 X
1107 ± 11 6609 ± 13 49 ± 12 X X
1279 ± 9 6781 ± 11 61 ± 11 X X

Table 7.4: 21Na+p resonance properties. An X denotes that the resonance was
observed in the specific channel listed in the column.

parity. This state is identified as the Ex = 6323 keV state as seen in refs. [7]

and [48] and unresolved in other experiments. In the (p,t) reaction of ref. [7],

the assumption was made that only states of natural parity would likely be

formed in 22Mg. This assumption is based on the premise that if states are

populated with similar intensities to known natural parity transitions, then

they are likely to have been formed by the two nucleons being in a relative

s-wave state during transfer and have the outgoing triton spin oriented in the

same direction as the final 22Mg spin , ie. the proton serves as a “spectator”.

However, it is also possible that unnatural parity states can be populated

via a spin-flip mechanism. If the particle width of the compound state is

large, then the reaction will proceed with high probability, regardless of the

parity change. A DWBA fit to an angular distribution of the reaction would

likely yield the parity assignment of the state if a unique angular momentum

transfer could be seen. Therefore, the natural parity assignments of ref. [7]

can only be regarded as “weak” arguments, given that no detailed angular

distribution was fitted.

In the 12C(16O,6He)22Mg reaction of ref. [50], it is also assumed that

only states of natural parity would tend to be selected by the reaction pro-
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cess, which is thought to be a compound nucleus process. Here however,

the selection is perhaps more strongly apparent than in the (p,t) reaction,

since the 22Mg spin-parities are determined by the breakup `-value primar-

ily, the compound nucleus states being formed with natural parity. Indeed,

this reaction failed to see the state in question yet saw other nearby natu-

ral parity states of similar strength, suggesting either that the experimental

spin-selectivity is indeed active and the state is unnatural parity, or that

the resolution in the experiment was insufficient to resolve this state from

the nearby Ex = 6248 keV state. The assignment of Jπ = 1+ to this state

therefore does not contradict previous experimental data.

One aspect of this assignment to be considered is the placement of

this state within the isospin T=1 triplet analogue system of 22Ne, 22Na and

22Mg. Figure 7.13 shows the known T=1 states in the analogue system.

Where spin-parities are known, they have been indicated on the diagram.

The four resonances measured in this experiment are also marked on the

diagram, the 6327 keV state marked with the 1+ assignment. The analogue

of this state in the 22Ne system must also be a 1+ state. The nearest 1+

state is the Ex = 6854 keV state in 22Ne. If this is indeed the analogue of

the 6327 keV state, the Thomas-Ehrmann shift between the states is fairly

large (527 keV). However, the assignment of the 22Ne Ex = 6120 keV and

22Mg Ex = 5714 keV 2+ states as analogues provides a Thomas-Ehrmann

shift of 406 keV in the same system, which is not far removed from the value

of 527 keV. Of course, the shift depends on the various nuclear properties of

the state, and so we can estimate the order of magnitude shift caused by a

pair of states for different values of the dimensionless width.
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Figure 7.13: The T=1 isospin triplet analogue system of 22Ne, 22Na and 22Mg.
Spin-parities have been marked where known. Dashed energy level lines in 22Na
indicate states which have ambiguous T=1 assignments. The dash-dotted lines
show suggested possible analogue assigments.
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The dimensionless particle width, θp, of a state is a measure of how

wide a state is compared to the maximum possible value in single-particle

terms, given by the Wigner limit. Using this time, a value of a = 5.3 fm

for the radius, as determined by the R-Matrix fits, we arrive at an ` = 0

Wigner limit value of around ΓW
p ≈ 90 keV for the 825 keV resonance. The

dimensionless width is the square root of the ratio of the true width to the

Wigner limit2, and in this case gives

θp =

√

Γp

ΓW
p

≈ 0.4 (7.5)

for this resonance. In order to estimate the level shifts, we consider

the energy shift of the Ex = 6854 keV bound state in 22Ne, which is given

by (ref. [79])

∆b = −3

2

~
2

µa2
θ2

bρ
W ′

`

W`
(7.6)

where W` and W ′

` are the Whittaker function and its derivative, re-

spectively. The level shift in 22Mg, of the analogue state with resonance

energy ER, is given by

∆R = −3

2

~
2

µa2
θ2

RS` (7.7)

where S` is the shift function. We assume that θb = θR. We can then

iterate values of θ until the equality Eb − ER = ∆b −∆R is satisfied, where

Eb is the neutron separation energy of 22Ne minus the state energy. In this

2The dimensionless width can also be given in terms of the reduced width, and shift

derivative by θp =
√

2Pγ2
p/ΓW

p (1 + S′γ2).
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way, we find that with a value of θ ≈ 0.5, we can produce a shift of sufficient

size to place the resonance energy of the 22Mg state at 0.825 MeV. This

would correspond to a proton width of about 25 keV. This is a simplified

picture, since the nuclear properties of the analogue states are never likely

to be the same, and various admixture properties in each state can alter the

shift. However, this result seems to show that the level shift observed is not

unusual in any way, instead is compatible with the simple Wigner limit and

Thomas-Ehrmann shift restrictions.

The 22Mg state energy implied by the resonance, Ex = 6326.6 ± 3.0

keV, agrees well with previously measured values. The most accurate mea-

surements were those of refs. [7] and [48], with values of 6322.6±6.0 keV and

6329± 6 keV respectively, which places our value in the overlapping region

of the error bars of each of these measurements, leading to a new adopted

value of 6326.0± 2.6 keV.

7.4.2 1079 keV and 1107 keV resonances

The 1079 keV resonance (Ex = 6581 keV) has not been previously observed

in any experiment. Here, it was seen strongly in the inelastic channel, while

there was slight evidence for it in the elastic channel in the form of a shape

distortion near the low energy minimum of the second elastic resonance.

Although at this point, without a multi-channel fit, we are unable to make

a spin-parity assignment, restrictions can be put on the possible qualities.

The state must have a spin-parity which encourages greater probability of

the inelastic exit channel than the elastic exit channel. This could occur for

various situations where the outgoing orbital angular momentum is low, cf.
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table 7.3. For example, positive parity states could be formed via ` = 0, 2 in

the entrance channel, then proceed via `′ = 0, 2 in the inelastic exit channel.

However, if the leading partial wave was an s-wave, then the resonance

would be larger in the elastic channel in terms of shape, given the width of

this resonance as deduced from the inelastic data. Negative parity states

could be formed with ` = 1 in both the entrance and exit channels, with

the subsequent elastic shape being weaker than the equivalent width s-wave.

Certainly there are candidates for both analogue positive and negative parity

states in 22Ne, notably the (2,3)+ at 6636 keV, the 1− at 6691 keV, and the

2+ at 6819 keV. The total width of this state was estimated as 9 ± 3 keV,

however, without a multi-channel fit, we cannot yet say anything about the

partial elastic and inelastic strengths.

The 1107 keV resonance (Ex = 6609 keV) is identified as the Ex =

6608.5 keV (adopted value) state observed in several previous measurements.

The shape of this resonance resembles an s-wave, and indeed its strength is

similar to that of the 825 keV resonance. The spin restrictions on this state

would then be Jπ = 1+, 2+, although the attempted elastic fit seemed to

suggest a 2+ state. However, without confirmation from a multi-channel fit,

no assignment will be made here. The total width of this state as suggested

by the inelastic peak fit is around 49 ± 12 keV. During attempted elastic

fits, the suggested proton width was of the order of 20 keV, making it likely

that the inelastic width and elastic width are of similar strength. The state

energy implied by this resonance is 6609 ± 13 keV. The previous adopted

value was 6608.5± 5.6 keV, which is in very good agreement.
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7.4.3 1279 keV resonance

The 1279 keV resonance (Ex = 6781 keV) is identified as the Ex = 6780.4

keV (adopted value) state measured in six previous experiments. The large

implied total width of around 61 keV is reflected in both a large elastic

resonance shape and a large peak in the inelastic channel. The unsatisfactory

fit of this resonance with a single-channel s-wave makes it impossible to

assign a spin or partial widths to the state, provoking the need for a multi-

channel analysis similar to the other resonances. The fact that this resonance

could proceed via an odd or even leading `-value means that the state could

be either natural or unnatural parity.

7.5 Astrophysical implications for the

21Na(p,γ)22Mg reaction

It has been reported in earlier work [80] [81] [40] that only the first three lev-

els above the proton threshold in 22Mg are significant for the 21Na(p,γ)22Mg

rate in novae. However, at higher temperatures, for example in X-ray binary

systems, the states at higher energies will become more important. A large

uncertainty in the current reaction rate arises from the unknown strength

of the resonance associated with the Ex = 6045.6 keV state [7]. Using the

upper limit of ωγ ≤ 3.7 × 10−1 eV for this resonance, and the resonance

strengths tabulated in ref. [7], Table X., we can calculate the resonant con-

tributions to the 21Na(p,γ)22Mg reaction. Calculations were made including

the first two states above threshold, the first four states above threshold,

and the first eight states above threshold (including the four states seen in
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this experiment). The resonance strengths used for the four upper states

were the maximum values suggested by the total widths of the states, and

Γγ = 0.4 eV was chosen for all these states, given that recent unpublished

experimental evidence from DRAGON [67] suggests a γ-width of around this

value for the 825 keV resonance3.

The widths of the four upper resonances have total widths which are

less than 10% of their resonance energy. According to this, the authors of

ref. [3] prescribe the treatment of these as narrow resonances. In this way,

the widths are not treated as energy-dependent quantities but as fixed at

their resonance energy value, and the reaction rate can be expressed as the

sum of individual resonances using the complete4 form of equation 2.11:

< συ >=

(

2π

µkT

)3/2

~
2
∑

i

(ωγ)i exp

(

− Ei

kT

)

(7.8)

The resulting total resonant reaction rate can be seen in figure 7.14 for

the contribution of two, four and eight states. The parameters of the states

were set as, including those used in the calculation:

3The γ-width of the 1+, Ex = 6854 keV state in 22Ne is known to be Γγ = 1.7 eV [82].
4The electron screening factor f has been ignored in this work.
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Figure 7.14: 21Na(p,γ)22Mg reaction rate including contributions from different
sets of resonances. The solid lines are the sum of the resonant contributions. The
data are direct and resonant rates tabulated in ref. [7].
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ER (keV) Ex (keV) Jπ Γp (eV) Γγ (eV) ωγ (eV)

212.4 5713.9 2+ 4.6× 10−3 2.2× 10−2 2.4× 10−3

335.5 5837 3+ 4.7× 10−2 ≥ 6.6× 10−2 3.2× 10−2

460.4 5961.9 ≤ 1.6× 102 ≈ 1 ≤ 3.7× 10−1

544.1 6045.6 0+ 8.8× 10−1 1.6× 10−3 2.0× 10−4

824.6 6326.1 1+ 1.36× 104 0.4 0.15

1079 6581 1 0.9× 104 0.4 0.15

1107 6609 2 0.49× 105 0.4 0.25

1279 6781 2 0.61× 105 0.4 0.25

Also shown in figure 7.14 are the direct capture reaction rate and

resonant rate for the four lower states up to 0.4 GK given in ref. [7]. Above

around 0.4 GK the rate is uncertain due to the unknown strength of the

460.4 keV resonance. A close up of the high temperature region (fig. 7.15)

between 0.1 GK and 10 GK shows the different behaviour of the reaction

rates. Up to 0.4 GK, the rates including two, four and eight states agree,

ie. the reaction rate is dominated by the lower two resonances and adding

higher ones does not make much difference. However, we see that if we add

the 460.4 keV resonance (and the 544.1 keV resonance) using its maximum

possible value, the rate differs significantly above 0.4 GK. This is the main

reason why the strength of the 460.4 keV resonance is much sought after.

Adding the four upper resonances makes no significant difference until above

1 GK, when the role of the 824.6 keV resonance becomes important.
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Figure 7.15: Close up of figure 7.14 in high temperature region.
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Figure 7.16: Individual resonance contributions in high temperature region.
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Figure 7.17: Individual resonance contributions in high temperature region, with
(ωγ)3 set to 3.2× 10−2 eV.
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We can see the behaviour of individual resonances in the high temper-

ature region by looking at the rate of each individual resonance contribution

separately. Figure 7.16 shows the behaviour of the eight resonances between

0.1 GK and 10 GK. It is clear to see that while the 460.4 keV resonance takes

on its maximum strength, no other resonance becomes more important in

this temperature region. However, it is unlikely that the 460.4 keV resonance

will have such a strength. Instead, we can consider the effect on the reac-

tion rate if the 460.4 keV resonance has a similar strength to the 335.5 keV

resonance. Setting the strength to 3.2×10−2 eV, the rate picture looks very

different (fig. 7.17). Here, the influence of the 460.4 keV resonance never

becomes stronger than the 335.5 keV resonance, and so the resonances which

dominate the reaction in their respective approximate temperature regimes

would be:

212.4 keV 0 < T9 ≤ 0.5

335.5 keV 0.5 < T9 ≤ 3.7

824.6 keV 3.7 < T9 ≤ 6.4

1107 keV 6.4 < T9

Results from (p,γ) measurements at DragON are eagerly anticipated

therefore in order to primarily reduce the uncertainty of the 460.4 keV reso-

nance strength and confirm the 0.4 eV γ-strength of the 824.6 keV resonance.

It must be noted that depending on the relative partial elastic and inelastic

widths measured as a result from a multi-channel R-Matrix fit on the data of

this experiment, a treatment of the reaction rates using the broad resonance

formalism of ref. [3] may change the values obtained substantially. For

example, the large width of the 824.6 keV resonance may extend radiative-

capture further into the low energy regime. Also, the treatment of radiative
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capture of the first excited state of 21Ne using the inelastic cross-sections

may further strengthen the reaction at higher temperatures. Beyond the

information retrieved during this analysis, it is expected that multi-channel

R-Matrix fits would enable the determination of most of the important pa-

rameters associated with these different reaction rate contributions.



Chapter 8

Summary and Future Work

8.1 The lifetime of the 4.033 MeV state of

19Ne

The measurement of the 15O(α,γ)19Ne reaction rate via the Ecm=0.502 MeV

resonance remains a much sought-after result in Astrophysics. The width of

this resonance has a large effect on the rates at which the hot-CNO cycle is

broken in explosive astrophysical scenarios, and although experiments have

been proposed at international facilities such as ISAC-TRIUMF to measure

this rate directly, such difficult measurements are likely not to yield confident

and accurate results until many years from now. The recent experimental

limits [26] imposed on the α-branching ratio of this resonance make a com-

plementary measurement of the lifetime of the 4.033 MeV state even more

important, since these results, together, would provide the first experimental

limits on the reaction rate without any analogue nucleus or model assump-

tions involved. The experiment described in this work is one of the best

169
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possibilities so far for a chance to measure the lifetime, given the indications

of this work.

This initial experiment was undertaken to try and establish what is

needed in an experimental setup to measure the lifetime. What has been

found is that the γ-ray detection efficiency would need to increase substan-

tially in order to enable the detection of the 4.033 MeV γ-rays, with sufficient

statistics to be able to detect a centroid shift between successive implanted

target runs using different stopping mediums. Based on the data collected in

the HPGe detectors, it is expected that an initial improvement of at least 2

orders of magnitude in absolute γ-detection efficiency would need to be made

in order to simply see the 4.033 MeV γ-rays. This could be done perhaps by

introducing a segmented γ-ray array with high solid angle and anti-Compton

rejection capabilities. An example of the kind of facility needed in this ex-

periment is the TIGRESS γ-detector array proposed for TRIUMF-ISAC.

This consists of an array of segmented high efficiency Germanium detec-

tors, arranged so as to have an absolute efficiency of more than 15% [83].

The clover-style detectors are able to reject Compton scattered γ-rays us-

ing a surrounding BGO shield giving a superior peak-to-background ratio.

The segmentation of the detectors also allows the correction of Doppler-

broadened γ-rays, which is an important feature in this experiment where

the shape of the detected peak is crucial to the lifetime measurement.

The particle telescope should be pixellated in the lifetime experiment.

This enables the identification of the excited states via the α-particle en-

ergies, but more importantly, allows the angle of the recoiling 19Ne to be

determined. In this way, the true angle between the direction of motion of

the recoiling nucleus and the emitted γ-ray can be determined, so that the
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correct Doppler shift effects can be determined in the analysis.

It is the conclusion of this thesis experiment that the 3He(20Ne,4He)19Ne

reaction using 3He implanted targets is a viable method of determining the

lifetime of the 4.033 MeV state of 19Ne via the Doppler shift attenuation

method. The experimental techniques and facilities to do this have been

identified. This knowledge should enable an experiment to be designed

which could measure the lifetime. It would be a difficult experiment, but

nevertheless of great interest to the field of Nuclear Astrophysics.

8.2 Resonance states in 22Mg and the

21Na(p,γ)22Mg reaction

The resonant elastic scattering experiment described in chapters 4 through

7 of this thesis, identified four states in 22Mg associated with proton reso-

nances in the 21Na+p system. A single-channel ` = 0 R-Matrix code was

used to fit the elastic data where possible, resulting in the resonance energy

and width of one resonance being measured. This method fails to be able to

fit other resonances due to a finite strength in the inelastic channel for scat-

tering to the first excited state of 21Na, creating the need for a multi-channel

formalism to be used in future calculations.

The inelastic peaks observed in the experiment were used to estimate

the total widths and resonance energies of those resonances which could not

be fitted with the R-Matrix formalism.

The spin-parity of one state in 22Mg could be deduced from the R-

Matrix fit, allowing tentative assignments for analogue states in the mirror
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nucleus 22Ne to be made. This may be helpful in deducing the spins of other

states in 22Mg by narrowing down the uncertainty between the two nuclei.

The maximum possible widths deduced from this experiment were used

to calculate the 22Na(p,γ)22Mg resonant reaction rate for temperatures up

to 10 GK, using information assumed from properties of the mirror nucleus.

The rates are unchanged with respect to previous calculations below a tem-

perature of around 4 GK. However the calculations show that the reaction

rate would be dominated by one of the lower resonances seen in this exper-

iment above 4 GK, temperatures which perhaps occur in highly explosive

scenarios such as X-ray bursters. However, these estimations need to be

verified via the (p,γ) measurement of the resonances.

The uncertainty of the contribution of lower energy resonances not ob-

served in this experiment poses the greatest problem for the pinning down

of the reaction rate over all temperature regimes relevant to astrophysics.

However, the DRAGON measurements underway will provide further infor-

mation on some of these lower resonances in the near future.

In order to determine the spin-parities and relative elastic/inelastic

strengths of the resonances seen in this experiment, it is anticipated that

further work will be made outwith the duration of this thesis on a multi-

channel R-Matrix code. It is hoped that the γ-ray channel can be included in

this formalism, enabling a complete description of the true physical processes

involved.

A multi-channel formalism will provide a valuable tool for future work

in (p,p) experiments with radioactive beams, complementing DRAGON

(p,γ) measurements. In this way many more reactions relevant to the rp-

process can be studied via medium-to-low energy proton resonances. There
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are still many unknowns in the proton-rich isotope region of interest, and

the development of new radioactive beams at ISAC and other international

facilities will hopefully usher in an era of unprecedented study of the nuclear

properties of these radioactive nuclei.



Appendix A

A.1 Doppler shift attenuation method

The Doppler-shifted energy of a γ-ray emitted at an angle θγ to the direction

of motion of an excited nucleus with velocity β = v/c is given by

Eγ = Eγ0
(1− β2)1/2

1− β cos θγ

(A.1)

where Eγ0 is the energy of the γ-ray in the nucleus rest frame. This

can be expanded and to first order in β is given by

Eγ = Eγ0(1 + β cos θγ) (A.2)

A beam of excited nuclei all travelling with initial velocity v(0) will

decay at a rate

dN(t)

dt
= −N0

τ
e−t/τ (A.3)

where t is the actual decay time measured from the time of creation

of the excited state (t=0), and τ is the mean lifetime of the state.
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If the excited nuclei are created within a matrix of some stopping

material, then the nuclei will be decelerating as they decay, resulting in a

range of different velocities at the time of decay, and therefore a range of

different Doppler-shifted γ-ray energies. A given type of nucleus with given

velocity will have a characteristic stopping time in any material, ie. the

mean time taken for all the ions to slow down to rest in that material. If

the lifetime of the state is short compared to the stopping time, then the

majority of nuclei will decay long before the nucleus slows down enough for

nuclear stopping effects to become important [32]. This means that during

the time before decay, electronic stopping effects are the major contributing

factor to the slowing down of the nucleus. The energy loss of the ion before

decay can be taken as constant if the lifetime is short enough, and is given

by [32]

− dE

d(ρx)
≡ −M

dv

dt
= Kc(vi/v0) (A.4)

where ρ is the density of the material, M is the mass of the ion, Kc is

a stopping constant, vi ≡ v(0) is the initial velocity of the ion and v0 is some

fraction of the speed of light, a convenient unit of velocity1. The differential

equation can be solved to give

V = 1− α−1
c t (A.5)

where αc = Mv0/ρKc is the characteristic stopping time for the con-

stant energy loss given above. V ≡ v(t)/v(0) is a convenient variable since

1The expression of the initial velocity as a fraction of v0 enables the low velocity limit
v/v0 ≤ 1 to be set for different experimental situations, below which nuclear stopping
effects become important [32]
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it exists in the interval [1,0]. When V = 1, v(t) = v(0) and therefore

Eγ = Eγ0 + Eγ0β0 cos θγ, ie. the γ-ray energy is Doppler-shifted by the full

amount possible at that angle (β0 is the maximum possible value of β(t)).

At the other end of the range, when V = 0, v(t) = 0 meaning that the ion

has stopped and so Eγ = Eγ0 ie. no Doppler shift.

The Doppler relation given by equation A.2 means that the observed

γ-ray energy is linear in β(t) and so we essentially see the velocity line shape

which is given by the number of decays at a certain velocity per velocity

interval:

dN(V )

dV
= y[e−y(1−V ) + y−1δ(V )e−y] (A.6)

obtained from equation A.3, where y = αc/τ .

To get the experimentally observed lineshape, the detector response

function has to be considered. Usually a gaussian, a γ-ray detector response

function, φ(V ), has the effect of spreading the detected energy (velocity)

about its actual value. The experimental lineshape distribution is then given

by convoluting the velocity line shape with the response function:

[dN(V )/dV ]exp =

∫

∞

0

ye−y(1−V ′)φ(V − V ′)dV ′ (A.7)

The δ-function part of equation A.6 has been ignored, as it is not

important for τ � αc [32]. A transformation of variables is made into the

γ-ray energy system using the relation

V (t) =
Eγ(t)/Eγ0 − 1

β(0)〈cos θγ〉
(A.8)
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Figure A.1: Velocity line shapes for decaying nuclei with different lifetimes.

where the substitution V (t)β(0) = β(t) has been made into equation

A.2. Note that the inclusion of the averaged cosine of the γ-ray angle has

been included to take into account that a real detector subtends a range

of emitted γ-ray angles. This enables a direct relationship between the

experimentally observed lineshape, [dN(Eγ(V (t))/dV ]exp and the variables

θγ, β(0), Eγ0, αc and τ .

Figure A.1 shows two different velocity line shapes for the decay of

γ-rays at θγ = 0◦ in a medium of characteristic stopping time αc = 460

fs, for mean lifetimes of 20 fs (black) and 90 fs (red). It can be seen that

the majority of the nuclei decay instantaneously, meaning the γ-rays are

detected with the full Doppler-shift at V=1. The exponential tail then falls

off as less γ-rays are emitted at the lower velocities. The shape for the longer

lifetime is more extended as the probability of decay at a later time, and

therefore lower velocity, is enhanced.
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Figure A.2: Velocity line shapes (transformed into detected γ-ray energy frame)
convoluted with detector response function, for different mean state lifetimes.

Figure A.2 shows the experimentally observed lineshapes when convo-

luted with a typical detector gaussian response function (3 keV fwhm) for

lifetimes of 9 fs (black), 20 fs (red) and 90 fs (blue) in the same medium as

above. Note that the detector response convolution has the effect of shifting

the centroid position of the observed lineshape.

The extraction of the mean lifetime from the spectrum shape can be

done in several ways. A direct fit of the spectrum line shape would yield a

measurement of τ if the stopping time of the material is known. It is useful

however, to define the quantity the Doppler Shift Attenuation Factor as the

ratio of the average Doppler shift to the the maximum Doppler shift. This

is given by

F (τ) =

∫ 1

0
V [dN(V )/dV ]dV

∫ 1

0
[dN(V )/dV ]dV
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= 1− y−1(1− e−y) (A.9)

which when τ � αc gives the relation

1− F (τ) = τ/αc (A.10)

Therefore, the lifetime could be extracted by measuring the centroid

positions of the Doppler-shifted peak for a situation where the nucleus is

decaying in vacuum (ie. full Doppler shift), and decaying in a matrix of

known αc, where the Doppler-shift is attenuated. This gives the measure-

ment of F (τ). Such a method has been utilised using heavy-ion reactions

with backed and unbacked targets [33]. This method is versatile in that it

can access nuclei far from stability using a suitable combination of target

and projectile, however, it is also limited to the range of self-supporting thin

targets that can be made.

A.2 Implantation and analysis of 3He targets

A.2.1 Target implantation

Several concepts must be considered when undertaking the implantation of

the 3He into the metal foils. Firstly, as detailed in ref. [31], the 3He is

implanted in the stopping material resulting in a distribution of 3He ions

over a finite distance. The incoming 20Ne beam will lose energy in the

target before reaching the 3He, and because of the energy loss distribution,

reactions will occur at a range of different beam energies. Also, the peak of

the 3He spatial distribution is where the majority of reactions occur, so as

the 20Ne beam loses energy in the beginning of the target, it will interact,
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with 3He at different mean energies for different target materials due to the

difference in stopping powers. It is therefore important to implant the 3He

as close as possible to the surface of the target, to minimise the energy

loss of the incoming beam, and also to ensure that the 3He is confined to a

small distance range inside the target, while also ensuring that the maximum

number of 3He ions possible are implanted. In a final DSAM measurement,

the 3He depth profile would need to be known accurately, and folded in

with the stopping powers of 20Ne to give the mean interaction energy for

each target. This effectively defines the mean velocity of the recoil at the

moment of creation, and therefore the maximum Doppler-shift possible for

the emitted γ-ray. In ref. [31], the 3He profile was measured using the

reaction 3He(16O,p)18F∗(1.04 MeV), for which the relevant cross-sections

were known, and using experimental stopping powers of 16O ions [84] in

the various metals, expressing the 3He profile in terms of energy loss of the

incoming beam.

For the reaction test experiment in this work, it was decided to implant

three types of foil with 3He ions for the purpose of: a) testing the implanta-

tion technique and b) testing the 3He(20Ne,4He)19Ne reaction using the foils

with an experimental setup close to that needed for a DSAM measurement.

In an initial implantation using the 500 kV ion-implanter machine at the

Surrey Centre for Research in Ion Beam Applications, University of Surrey,

UK, 3 µm thick targets of Tungsten and Tin and Aluminium were implanted

with 3He ions at an energy of 300 keV through an Aluminium degrader foil

of thickness 0.8 µm. Despite the low Coulomb barrier for Aluminium, it was

used in the test experiment to investigate how much background would re-

sult from fusion using this material. The low stopping power of Aluminium
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makes it an attractive choice for the DSAM experiment, if indeed the back-

ground contribution is not too high. The 500 kV implanter was limited to

energies of around a few hundred keV because its optics are optimised for

those energies. Therefore the inclusion of the degrader was required to en-

sure the 3He ions were incident on the target material at low energy. The

degrader thickness was dictated by the available self supporting material

available from suppliers, and therefore the beam energy was chosen to be

300 keV so that the 3He ions would be implanted in the materials at a mean

depth of around ∼0.2 µm. A beam spot scan pattern was used during the

implantation in order to ensure a uniform implantation areal density over

the implanted area, which was chosen to be 1 cm2.

The implanted dose in the targets was measured by integrating the

collected charge on the foils over time. A dose of 3 × 1017 ions/cm2 was

aimed for, over the 1 cm2 area. This dose, equivalent to about 16 µA·h of

3He+ beam, was successfully used in the DSAM experiment of ref. [31] to

measure a fast lifetime. Doses of 4He twice this magnitude were used in the

studies of ref. [32], where the effects of the fractional volume change of the

target foil caused by the implantation were considered and 4He retention

after implantation was also measured, the results showing that the Au and

Al foils lost up to 50-60% of the implanted dose, while the Ta and Mg foils

retained 100% [32]. The implantation of the Tin target was unsuccessful, its

low melting point making it unsustainable under the ∼ 5µA beam currents

required to allow the implantations to be performed in the allotted time.

Two other sets of targets were prepared. The second set included Gold

and Tungsten and doses of 3×1017 and 1×1018 ions/cm2 were implanted in

each type over an area of 1 cm2. This set was implanted using the Danfysik
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DF 1090 200kV Ion Implanter, also at the University of Surrey. This machine

is able to produce good quality 3He beams at low energies, hence no need for

a degrader foil. The targets were implanted at 25 keV, also ensuring a mean

depth of around ∼ 0.2µm. An X-Y 3He scan pattern of ∼ 0.5 Hz was used

to ensure the uniformity of the distribution, while currents with an average

of 80 µA were sustained on target. A third set of Tungsten targets were

prepared with the same machine with doses of 3× 1017 ions/cm2.

In the final DSAM measurement it would be imperative to know the

3He distribution inside the target foils in order to be able to calculate the

modified stopping power due to the presence of the implanted ions. In ref.

[32] the reaction 4He(18O,nγ)21Ne was used to determine the implantation

distributions. While a similar method would eventually be required in order

to determine the distribution of the implanted 3He in this work, it is also

important to know how much 3He is retained after implantation (to ensure

the required implanted dose is met) and after bombardment with 20Ne in

the main experiment. For this analysis, the reaction 3He(d,p)4He was used.

A.2.2 Foil analyses

A deuteron beam of 500 keV was produced using the ALTAIS tandetron

machine at the LARN laboratory, University of Namur, Belgium. This was

incident on the implanted side of the targets, where the mean depth is 0.2

µm. The beam current was integrated directly from the target holder, and a

+ve suppression voltage was applied to the target holder in order to ensure

secondary electrons did not escape from the target. A PIPS detector was

placed at 160◦ lab angle to detect the back-scattered beam particles from
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the target as a means of normalisation. A 1.5 mm thick PIPS detector was

placed at 90.45 mm from the target at an angle of 135◦, in front of which was

placed a 12 µm thick mylar foil to allow the transmission of protons from

the reaction 3He(d,p)4He while stopping any heavier particle. The target

doses were calculated using

Ntarget =

(

dσ

dΩlab

dΩlab

)

−1
Ndet

Ninc

where the number of incident particles, Ninc, is derived from the backscat-

tered deuterons. The differential cross-section for this reaction, which is al-

most isotropic in the CM frame, was taken from ref. [85]. The analysis was

performed for target sets 2 and 3, both implanted using the Danfysik ma-

chine. Set 2 had the analysis performed after exposure to a 10 nA, 57 MeV

20Ne beam over periods of around 10 hrs each, while set 3 had the analysis

made both prior to and post experiment, where they were also bombarded

with a 20Ne beam of 50 MeV at ∼10 nA. The targets of set 2 had been left

undisturbed for almost six months prior to the experiment, while set 3 were

implanted less than a week before exposure to the beam. Table A.1 shows

the results obtained from the 3He(d,p)4He measurement. We can see that

the measured dose of the target in set 2 which was supposedly implanted

with 3×1017 ions/cm2 has dropped by a factor of 3 as the result of exposure

to the heavy-ion beam and diffusion over time. However, we do not know the

actual dose that was implanted here. The other target in set 2 was thought

to have been implanted with 1× 1018 ions/cm2, and was subsequently mea-

sured as containing 1.84×1017 ions/cm2. However, set 3, measured less than

a week after implantation and prior to exposure to the heavy-ion beam, show
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Target set Material Pre-experiment dose Post-experiment dose
(ions/cm2) (ions/cm2)

2 W (nominal 1× 1018) 1.84× 1017

2 W (nominal 3× 1017) 1.01× 1017

3 W 1.04× 1017 1.04× 1017

3 W 1.14× 1017 1.08× 1017

Table A.1: Results from the 3He(d,p)4He reactions performed at Namur, showing
the foil contents pre- and post-experiment.

that although a dose of 3×1017 ions/cm2 was aimed for, only 1.04×1017 and

1.14 × 1017 ions/cm2 were present. After exposure to the heavy-ion beam,

doses of 1.04 × 1017 and 1.08 × 1017 ions/cm2 were recorded, respectively.

The indication here is that, although 3×1017 ions/cm2 were thought to have

been implanted in most cases, much less was actually measured after only

a short time. The diagnostics of the implantation process could possibly be

out by a factor 3, or perhaps an initial large percentage of 3He is lost imme-

diately after implantation, then settling down into a relatively stable state.

If so, then the indication is also that the targets which had more in them at

the beginning seem to have lost relatively more 3He, perhaps implying that

there is a distortion of the metal matrix at these higher densities enough to

allow excess 3He to diffuse out quickly. However, without more information,

it is difficult to say for certain what is actually occurring inside these im-

planted targets. For the purposes of the experiment, it has been confirmed

that there was at least 1×1017 ions/cm2 in all these targets during the time

of exposure to the heavy-ion beam.



Appendix B

B.1 Kinematics

We begin with the general situation of a heavy beam particle (m1) colliding

with target particle (m2). The detected light recoil (m4) is scattered at a lab

angle θlab, while the heavier scattered particle, which can be excited with

excitation energy Ex is scattered at an angle φlab (figure B.1).

From conservation of linear momentum and conservation of total ki-

netic energy, we can express the lab kinetic energy of the recoil, T4, as a

function of the reaction Q-value, θ, φ, the masses, and the beam energy, T1:

T
1/2
4 =

1

m3

cos θlab(m4m1T1)
1/2/

(

1 +
m4

m3

)

±

[

1

m2
3

cos2 θlab(m4m1T1)−
(

1 +
m4

m3

)((

m1

m3
− 1

)

T1 − q

)]1/2

/

(

1 +
m4

m3

)

(B.1)

where q = Q − Ex. For inelastic and elastic scattering, we make the

substitution m1 = m3,m2 = m4. Then Q = 0 and q = −Ex.

For elastic scattering (Ex = 0) equation B.1 reduces to:
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Figure B.1: Geometry of inverse kinematics reaction.

T4 = 4 cos2 θlab
m1m2

(m1 + m2)2
T1 (B.2)

Using the beam energy to centre-of-mass conversion E = T1m2/(m1 +

m2) we can then write:

T4 = 4E
m1

m1 + m2

cos2 θlab (B.3)

We can express the kinetic energy T′

4 of an inelastically scattered par-

ticle at angle θl arising from a collision of initial centre-of-mass energy E,

in terms of its relationship to an elastically scattered particle kinetic energy

T4 at the same angle, arising from the same initial centre-of-mass energy E,

by substituting equation B.2 into equation B.1:

T ′

4 =







(

T4(m1+m2)2

4m2

1

)1/2

±
(

T4(m1+m2)2

4m2

1

− (1 + m2/m1)Ex

)1/2

1 + m2/m1







2

(B.4)
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The centre-of-mass energy versus beam energy relation can also be

used to express T ′

4 as a function of centre-of-mass energy, as in equation 6.6.

B.2 R-Matrix single-channel cross-section deriva-

tion

Here we focus on the derivation of the single-channel (elastic only) differ-

ential cross-section in order to fit the elastic scattering excitation functions.

Although the scattering of 21Na+p is a multi-channel problem due to the

possibility of inelastic excitation to the first excited state of 21Na, this will

be an approximation to a multi-channel fit. The R-Matrix formalism of ref.

[14] is used, as described in section 2.2.

We begin with the general multi-channel equation for differential cross-

section of a process α→ α
′

given in ref. [14] section VIII:

dσαα′

dΩα′

= [(2I1 + 1)(2I2 + 1)]−1
∑∑∑

ss′

(2s + 1)
dσαs,α′s′

dΩα′

(B.5)

where

dσαs,α
′
s
′

dΩα′

=
π

(2s + 1)k2
α

× (CT + RT + IT ) (B.6)

The Coulomb term, CT, is given by

CT = (2s + 1)

∣

∣

∣

∣

1√
4π

ηα sin−2(θα/2) exp[−2iηα ln sin(θα/2)]

∣

∣

∣

∣

2

δαs,α
′
s
′ (B.7)

using Euler’s relation exp iθ = cos θ + i sin θ, we can expand the
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Coulomb term by multiplying the expression in the vertical brackets by

its complex conjugate to eliminate the imaginary part:

CT = (2s + 1)
1

4π
η2

α sin−4(θα/2)δαs,α′s′ (B.8)

which in the case of s=0, gives the Rutherford cross-section when

multiplied by the π/k2
α.

The resonant term, RT, is given by

RT =
1

π

∑∑∑

L

BLPL(cos θ) (B.9)

The BL coefficients are given by

BL =
1

4
(−)s−s

′ ∑∑∑

J`

Z̄(`
′

1J1`
′

2J2, s
′

L)Z̄(`1J1`2J2, sL)(T J
α

′
s
′
`
′

1
,αs`1

)(T J
α

′
s
′
`
′

2
,αs`2

)∗

(B.10)

The summation integer L is a summation over |`i − `
′

i|, as in ref. [86],

which in our case of single-channel s-waves always equals zero. Thus the

summation over L is dropped here and greatly simplifies some of the terms

in the cross-section formulae.

The Z̄ coefficients are related to the Racah1 coefficients, W by the

relation

Z̄(`1J1`2J2, sL) = (2`1 + 1)
1

2 (2`2 + 1)
1

2 (2J1 + 1)
1

2

×(2J2 + 1)
1

2 (`1`200|L0)W (`1J1`2J2, sL) (B.11)

1General analytic expressions for these coefficients can be found in ref [87]
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where (`1`200|L0) are the Clebsch-Gordan coefficients. These terms

are also related to the Z coefficients of Blatt and Biedenharn as [14]

Z̄(`1J1`2J2, sL) = i`1−`2−LZ(`1J1`2J2, sL) (B.12)

so in our case of s-wave scattering with L=0, the terms are equivalent

and can be simplified as in ref. [9]:

Z(0J10J2, s0) = (−1)J1−s(2J1 + 1)
1

2 (B.13)

where because J ≡ J2 = J1 and ` = 0, J − s = 0. Thus in equation

B.10 the two Z̄ terms become equal to (2J +1) in the special case of s-wave

single-channel scattering.

The transition matrix element T J
α

′
s
′
`
′
,αs`

can be written as

T J
α′s′`′ ,αs`

= exp 2iωα′`′ − UJ
α′s′ `′ ,αs`

(B.14)

UJ
α′s′ l′ ,αsl

is the collision matrix, which is given by

UJ
αs`,αs` = exp 2i(ωα` + δJ

αs`) (B.15)

for on-diagonal elements (elastic scattering). It is this simplification which

results in the single-channel formula since only on-diagonal elements con-

tribute to the expression. Again, we can expand the complex terms in the

expression and multiply by the complex conjugate to arrive at the single-

channel expression for the resonance term:

RT =
1

4π

∑∑∑

J`

(2J + 1){[cos 2ω` − cos 2(ω` + δJ
` )]2
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+[sin 2ω` − sin 2(ω` + δJ
` )]2}P`(cos θ) (B.16)

The interference term, IT, is written2

IT = δαs`,α′s′`′

1√
4π

∑∑∑

J`

(2J + 1)2Re[i(T J
αs`,α′s′`′)∗CαP`(cos θ)] (B.17)

which, with the same method of algebraic manipulation, can be ex-

pressed as

IT =
1

2π

∑∑∑

J`

(2J + 1)ηα sin−2(θ/2)×

{sin(2ηα ln sin(θ/2))[cos 2ω` − cos 2(ω` + δJ
` )]+

cos(2ηα ln sin(θ/2))[sin 2ω` − sin 2(ω` + δJ
` )]}×

P`(cos θ) (B.18)

The phase shifts δJ
` are given by

δJ
` (E) = arctan

P`(E)

(RJ
` )−1 + B` + S`(E)

− φ` (B.19)

R is the R-Matrix, and is constructed by

RJ
` =

∑∑∑

Ji

γ2
Jli

Ei − E
(B.20)

with γJli the reduced widths and Ei the state energies as in chapter

2Note that in the cross-section terms, CT and IT, there exist Kronecker delta symbols
which are identical to unity if the exit channel and entrance channel are identical, ie.
elastic scattering., and which are zero otherwise, ie. the occurrence of reactions.
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2.2. The summation integer ` is then dropped from these equations since

the assumption of only ` = 0 partial waves is being used in this formalism.

The essential difference between this formalism and the spin-zero, single-

channel formalism used in ref. [73] is that the spin-parity dependence of the

absolute differential cross-section is correct for our combination of target

and projectile spins, since the ref. [73] formalism practically assumes a spin-

statistical factor, ω = 1 for s-wave scattering.



Appendix C

C.1 Simulation of experimental data

Simulations were made representing the actual data taken in the experiment,

for the 21Na beam at energies of 690, 880, 990, 1144, 1240, 1340, 1440 and

1560 keV/A. An artificial s-wave resonance was positioned in the centre of

each thick target proton spectrum in order to be able to determine how

the original yield function is modified by the experimental effects. Each

resonance was calculated using a proton width of Γp = 8 keV and a spin

statistical factor, ω of 5
8

representing a compound state of Jπ = 2+, and the

single channel Breit-Wigner parametrization detailed in ref. [54].

Simulated proton spectra were plotted for the innermost annulus of

the forward angle detector, with high statistics, and the results analysed.

Figures C.1 and C.2 shows the simulated proton spectra for the eight

beam energies fitted with gaussian functions at the edges. The actual func-

tional form of the edge will not in general be gaussian, since it is a con-

volution of a step with two gaussians. However, a gaussian fit reproduces

the target edge shape approximately. The beam energy centroid position is
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Figure C.1: Gaussian fits to the edges of the simulated proton spectra for a range
of incident beam energies. The x-axes show centre-of-mass energy while the y-axes
show counts per channel.
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Figure C.2: Gaussian fits to the edges of the simulated proton spectra for a range
of incident beam energies. The x-axes show centre-of-mass energy while the y-axes
show counts per channel.



closely reproduced by taking the half maximum point of the gaussian slope,

ie. x̃+2.35σ/2 where x̃ is the mean of the gaussian and σ is the variance1.

Figures C.3 and C.4 shows the result of fitting the spectra with a res-

onance curve using MINUIT in PAW. In each case, the resonance energy,

width and spin of the resonance is fixed, and only the normalisation and

experimental resolution allowed to vary.

The results of these fits are listed in table 6.1 and shown in figure 6.5.

1It must be noted that the correct gaussian which reproduces the beam energy centroid
via this method is not necessarily the one which minimises the χ2, since by fitting from
further down the target edge we include less data points and therefore can easily find
a gaussian to give a small χ2. However, by taking the fit limits from roughly at the
maximum counts of the target edge, the beam energy centroid is reproduced within 1
keV in the centre-of-mass.
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Figure C.3: Resonance fits to the simulated proton spectra for a range of inci-
dent beam energies. The x-axes show centre-of-mass energy while the y-axes show
counts per channel.



C. 197

E3_init/3.79037 (MeV)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0.95 1 1.05 1.1 1.15 1.2 1.25

  136.7    /   119
P1  0.5832E-02
P2   36.19

:2/08/07   12.57

E3_init/3.79037 (MeV)

0

2000

4000

6000

8000

10000

1.05 1.1 1.15 1.2 1.25 1.3 1.35

  140.3    /   101
P1  0.5676E-02
P2   48.15

:2/08/07   13.12

E3_init/3.79037 (MeV)

0

2000

4000

6000

8000

10000

1.15 1.2 1.25 1.3 1.35 1.4 1.45

  126.1    /    98
P1  0.5862E-02
P2   58.14

:2/08/07   13.46

E3_init/3.79037 (MeV)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1.3 1.325 1.35 1.375 1.4 1.425 1.45 1.475 1.5 1.525 1.55

  169.0    /   119
P1  0.5733E-02
P2   52.83

:2/08/07   14.07

Figure C.4: Resonance fits to the simulated proton spectra for a range of inci-
dent beam energies. The x-axes show centre-of-mass energy while the y-axes show
counts per channel.



Appendix D

D.1 Large angle data

Data from the detector at larger laboratory angles, from the 21Na+p exper-

iment, were omitted from the analysis due to the difficulty in reproducing

the experimental smearing effects at these large angles, and also because of

the inability to include more than 16 angles in the R-Matrix fitting program

due to memory constraints.

In figure D.1 are shown four spectra (uncorrected against the 21Ne+p

resonance, unlike the data from the other detector) representative of the

data from the large angle detector. Gaps in the data mean that the target

runs did not overlap properly in these regimes due to excessive smearing.

D.2 Trigger logic

The trigger logic functionality for the 21Na+p experiment is shown in figure

D.2.
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Figure D.2: 21Na+p experiment trigger logic functionality.
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